
~llllllltMiflllllltiiiiiiiiiiiii'*'IIIIIIIIINIIti __ H __ IIIIIIIIIIItiiNIIIIIIIIIII&a lllllllllltlltiiM ____ IIIIIIIIIIIIIIII; - -. -- . -i ' INTERACTIVE COMituTER SYSTEM , INC. I . ~
! 840) DtMARCO ROAD • TAMPA, FLORIDA33814 I
~ (813) 884-11270 I - ~ - -! . Cc<. P.. T~::. C...,py . ~~ -• ! fig-FORTH I - ~ • • i INSTALLATION MANUAL ; . -- -- -i GLOSSARY ! . -. -i MODEL ! - -- -. .~
~

- -. -- -- -- -~ -- -- ! j -- ~
• I
~ RELEASE 1 !
• I
I •
• WITH COMPILER SECURITY I I •
- -- -I AND !
~ -- -- -i VARIABLE LENGTti NAMES ! - -- -- -- -- -- -- -- -- -§ -- -- -- -- -- -- -- -- -- -- ~ - -§ -- -.. -- -- -- ~{'} -- t_ • .:_ ii - -- -i MAY 1979 ! - -- -. ~ . -- -i Provided through the courtesy of the Forth Interest Group, P .0. Box 1105, !
~ San Carles 1 CA 94070. •
i i
- ~
I Further distribution of this public domain publication rrust include this notice. I
I I
a ~
LlltlltlltlllllllllllllltiiiiMI-..e--··-1---· , ... ,., .. llltllllttltlllllltlftltflllltllltllflltlll ___ _

FORTH INTEREST GROUP • ••• • P. 0. Box 1105 · · · • · San Carlos , Ca. 94070

!flltllllllllllllltltlllllllllllllliiiUIIIIIIIIIIIIIIIIfllllllllllllllllllllllllllllllllllllltiiiiiiiiiiiiiiMIItllltllll .. ltllllllllllllllll-111 .. 1111
~ . 5

- 5 ~ .
e • e • ; I • • e • s e

! I
s· I
I fig-FORTH I e -I I • INSTALLATION MANUAL • - -- -- -!! GLOSSARY ii
I I
• I i MODEL ~

- -- -- -- ii - -! !
ii !
I • - -- -• e
ii I
I ii
• RELEASE 1 s
§ !
I !
~ WITH COMPILER SECURITY I
I • - -- ~ I AND I
• ii • • I I ! VARIABLE LENGTM NAMES ! - -!! !! e e

- -- -e I
- -- -! !! a e - ~ - ~ - ~ !! I • • I • - . • I ! ~
~- ; . -. -§ 272 !
~ -e • • MAY 1979 •
~ -~ -1 e
• I I Provided through the courtesy of the Forth Interest Group, P .0. Box 1105, I i San Carlos, CA 94070. i
~ I I Further diotrlbution of this public domain public:c:tion rrust include this notice. J
L ... , ... ",.llllliiiiiiiiNIIItlllllllllllllllllltllllllllllll........_ lll"''"'lll ,., .. llltl"'"llllllll""....,..,. .

FORTH INTEREST GROUP • • • • • P. 0. Box 110 5 • • • • • San Carlos, Ca. 94070

fig-FORTH INSTALLATION MANUAL

1.0 INTRODUCTION

2.0 DISTRIBUTION

3.0 MODEL ORGANIZATION

4.0 INSTALLATION

5.0 MEMORY MAP

6.0 DOCUMENTATION SUMMARY

1.0 INTRODUCTION

The fig-FORTH implementation project occurred
because a key group of Forth fanciers wished
to make this valuable tool available on a
personal computing level. In June of 1978,
we gathered a team of nine systems level
programmers, each with a particular target
computer. The charter of the group was to
translate a common model of Forth into assem­
bly language listings for each computer. It
was agreed that the group's work would be
distributed in the public domain by FIG. This
publication series is the conclusion of the
work.

2.0 DISTRIBUTION

All publications of the Forth Interest Group
are public domain. They may be further
reproduced and distributed by inclusion
of this credit notice:

This publication has bee~ made available
by the Forth Interest Group,
P. 0. Box 1105, San Carlos, Ca 94070

We intend that our primary recipients of the
Implementation Project be computer users
groups, libraries, and commercial vendors.
We expect that each will further customize for
particular c~mputers and redistribute. No
restrictions are placed on cost, but we

expect faithfulness to the model. FIG does
not intend to distribute machine readable
versions, as that entails customization,
revision, and customer support better reserved
for commerical vendors.

Of course, another broad group of recipients
of the work is the community of personal
computer users. We hope that our publications
will aid in the use of Forth and increase
the user expectation of the performance of
high level computer languages.

3.0 MODEL ORGINIZATION

The fig-FORTH model deviates a bit from the
usual loading method of Forth. Existing
systems load about 2k bytes in object form
and then self-compile the resident system
(6 to 8 k bytes). This technique allows
customization within the h~gh level portion,
but is impractical for new implementors.

Our model has 4 to 5 k bytes written as assem­
bler listings. The remainder may be compiled
typing in the Forth high-level source, by
more assembly source, or by disc compilation.
This method enhances transportability,
although the larger portion in assembly code
entails more effort. About 8k bytes of memory
is used plus 2 to Sk for workspace.

3.1 MODEL OVER-VIEW

The model consists of 7 distinct areas. They
occur sequentially from low memory to hi~h.

Boot-up parameters
Machine code definitions
High level utility definitions
Installation dependent code
High level definitions
System tools (optional)
RAM memory workspace

FORTH INTEREST GROUP o o o o o P. 0. Box 110 5 o o • • • San Carlos, Ca. 94070

3.2 MODEL DETAILS

Boot-up Parameters

This area consists of 34 bytes containing a
jump to the cold start, jump to the warm
re~start and initial values for user variables
and registers. These values are altered as
you make permanent extensions to your
installation.

Machine Code Definitions

This area consists of about 600 to 800 bytes
of machine executable code in the form of
Forth word defintions. Its purpose is to
convert your computer into a standard Forth

stack computer. Above this code, the balance
of Forth contains a pseudo-code compiled of
"execution-addresses" which are sequences
of the machine iddress of the "code-fields"
of other Forth definitions. Ail execution

ultimately refers to the machine code
definitions.

High-level Utility Definitions

These are colon-definitions, user variables,
constants, and variables that allow you to
control the "Forth stack computer". They
comprise the bulk of the system, enabling
you to execute and compile from the terminal.
If disc storage (or a RAM simulation of disc)

is available, you may also execute and compil~
from this facility. Changes in the high-level

area are infrequent. They may be made thru

the assembler source listings.

Installation Dependertt Code

This area is the only portion that need
change between differertt installations of the
same computer cpu. Ther~ are four code
fragments:

(KEY) Push the next ascii value (7 bits)
from the terminal keystroke to the
computation sta~k and execute NEXT.
High 9 bits are zero. Do not echo this
character, especially a control character.

(EMIT) Pop the computation stack
(16 bit value). Display the low 7 bits
on the terminal device, then execute
NEXT. Control characters have their
natural .functions.

{?TERMINAL) For terminals with a break
key, wait till released and push to
the computation stack 0001 if it was
found depressed; otherwise 0000.
Execute NEXT. If no break key is avail­
able, sense any key depression as a
break (sense but don't wait for a key).
If both the above are unavailable,
simply push 0000 and execute NEXT.

(CR) Execute a terminal carriage
re~urn and line feed. Execute NEXT.

When each of these words is executed, the
intepreter vectors from the definition
header to these code sequences. On
specific implementations it may be necessary
to preseve certain registers and observe
operating system protocols. Understand the

implementors methods in the listing before
proceeding!

R/W This colon-definition is the
standard linkage to your disc. It
requests the read or write of a disc
sector. It usually requires supporting
code definitions. It may consist of
self-contained code or call ROM ~onitor
code. When R/W is assembled, its code
field address is inserted once in
BLOCK and once in BUFFER.

An alternate version of R/W is
included that simulates disc storage
in RAM. If you have over 16 k bytes
this is practical for startup and
limited operation with cassette.

High-level Definitions

The next section contains about 30 definit­
ions involving user interaction: compiling
aids, finding, forgetting, listing, and
number formating. These definitions are
placed above the installation dependent code
to facilitate modification. That is, once
your full system is up, you may rORGET part

of the high-level and re-compile altered
definitions from disc.

Sytsem Tools

A text editor and machine code assembler are
normally resident. We are including a sample

editor, and hope to provide Forth assemblers.
The editor is compiled from the terminal
the first time, and then used to place the
editor and assembler source code on disc.

It is essential that you regard the assembly
listing as just a way to get Forth installed
on your system. Additions and changes must
be planned and tested at the usual Forth high
level and then the assmbly routines updated.
Forth work planned and executed only at an
assembly level tends to be non-portable, and
confusing.

RAM Workspace

For a single user
must be available
(the dictionary).
is most typical.

system, at least 2k bytes
above the compiled system

A 16k byte total system

The RAM workspace contains the computation
and return stacks, user area, terminal input
buffer, di~c buffer and compilation space
for the dictionary.

FORTH INTEREST GROUP · · · · · P. 0. Box 1105 ·· · · · San Carlos, Ca. 94070
"'

4.0 INSTALLATION

We see the following methods of getting a
functioning fig-FORTH system:

l.

2.

3 •

4.

Buy loadable object code from
a vendor who has customized.
Obtain an assembly listing with
the installation dependent code
supplied by the vendor.
Assemble and execute.
Edit the FIG assembly listing
on your system, re-write the
I-0 routines, and assemble.
Load someone else's object code
up to the installation dependent
code. Hand assemble equivalents
for your system and poke in with
your monitor. Begin execution
and type in (self-compile) the
rest of the system. This takes

about two hours once you under­
stand the structure of Forth (but
that will take much more time!).

Let us examine Step 3, above, in fuller
detail. If you wish to bring up Forth only
from this model, here are the sequential
steps:

4.1 Familiarize yourself with the model
written in Forth, t.he glossary, and specific
assembly listings.

4.2 Edit the assembly listings into your
system. Set the boot-up parameters at origin
offset OA, OB (bytes) to 0000 (warning=OO).

4.3 Alter the terminal support code
(KEY, EHIT, etc,) to match your system.
Observe register protocol specific to your
implementation!

4.4 Place a break to your monitor at the end
of NEXT, just before indirectly jumping via
register W to execution. W is the Forth name
for the register holding a code field address,
and may be differently referenced in your
listings.

4.5 Enter the cold start at the origin. Upon
the break, check that the interpretive. pointer
IP points within ABORT and W points to SP!.
If COLD is a colon-definition, then the IP
has been initialized on the way to NEXT and
your testing will begin in COLD. The
purpose of COLD is to initialize IP, SP, RP,
UP, and some user variables from the start-up
parameters at the origin.

4.6 Continue execution one word at a time.
Clever individuals could write a simple trace
routine to print IP, W, SF, RP and the top of
the stacks. Run in this single step mode
until the greeting message is printed. Note
that the interpretation is several hundred
cycles to this stage!

4.7 Execution errors may be localized by
observing the above pointers when a crash
occurs.

4.8 After the word QUIT is executed
(incrementally), and you can input a "return"
key and get OK printed, remove the break.
You may have some remaining errors, but a
reset and examination of the above registers
will again localize problems.

4.9 When the system is interpreting from the
keyboard, execute EMPTY-BUFFERS to clear
the disc buffer area. You may test the disc
access by typing: 0 BLOCK 64 TYPE
This should bring sector zero from the disc
to a buffer and type the first 64 characters.
This sector usually contains ascii text of the
disc directory. If BLOCK (and R/W) doesn't
function--happy hunting!

5.0 If your disc driver differs from the
assembly version, you must create your own
R/W. This word does a range check (with
error message), modulo math to derive sector,
track, and drive and passes values to a
sector-read and sector-write routine.

RAM DISC SIMULATION

If disc is not available, a simulation of
BLOCK and BUFFER may be made in RAM. The
following definitions setup high memory as
mass storage. Referenced 'screens' are then
brought to the 'disc buffer' area. This is
a good method to test the start-up program
even if disc may be available.

HEX
4000 CONSTANT LO (START OF BUFFER AREA
6800 CONSTANT HI (10 SCREEN EQUIVALENT

R/W >R (save boolean)
B/BUF * LO + DUP
HI > 6 ?ERROR (range check
R> IF (read) SWAP ENDIF
B/BUF CMOVE

Insert the code field address of R/W into
BLOCK and BUFFER and proceed as if testing
disc. R/W simulates screens 0 thru 9 when
B/BUF is 128, in the memory area $4000 thru
$6BFF.

FORTH INTEREST GROUP · · · · · R 0. Box 1105 · · · · · San Carlos, Ca. 94070

fig-FORTH VARIABLE NAME FIELD

A major FIG innovation in this model, is

the introduction of variable length defin­

ition names in compiled dictionary entries.

Previous methods only saved three letters and

the character count.

The user may select the letter count saved,

up to the full natural length. See the

glossary definition for WIDTH.

In this model, the following conventions

have been established.

1. The first byte of the name field has the

natural character count in the low 5 bits.

2. The sixth bit = 1 when smudged, and will

prevent a match by (FIND).

J, The seventh bit = 1 for IMMEDIATE ~efin­

itions; it is called the precedence bit.

4. The eighth or sign bit is always = 1.

s. The following bytes contain the names'

letters, up to the value in WIDTH.

6. In the byte containing the last letter

saved, the sign bit = 1.
7. In word addressing computer, a name may

be padded with a blank to a word boundary.

The above methods are implemented in CREATE.

Remember that -FIND uses BL WORD to bring

the next text to HERE with the count preceed­

ing. All that is necessary, is to limit by

WIDTH and toggle the proper delimiting bits.

5.0 MEMORY MAP

The following memory map is broadly used.

Specific installations may require alterations

but you may forfeit functions in future FIG

offerings.

The disc buffer area is at the upper bound of

RAM memory. It is comprised of an integral

number of buffers, each B/BUF+4 bytes.

B/BUF is the number of bytes read from the

disc, usually one sector. B/BUF must be a

power of two (64, 128, 256, 512 or 1024).

The constant FIRST has the value of the

address of the start of the first buffer.

LIMIT has the value of the first address

beyond the top buffer. The distance between

FIRST and LIMIT must be N*(B/BUF+4) bytes.

This N must be two or more.

Constant B/SCR has the value of the number of

buffer~ per screen; i.e. 1024 I B/BUF.

The user area must be at least 34 bytes; 48

is more appropriate. In a multi-user system,

each user has his own user area, for his copy

of system variables. This method allows re­

entrant use of the Forth vocabulary.

The terminal input buffer is decimal 80 bytes

(the hex 50 in QUERY) plus 2 at the end. If a

different value is desired, change the limit

in QUERY. A parameter in the boot-up

literals locates the address of this area for

TIB. The backspace character is also in the

boot-up origin parametersw It is universally

expected that •irubout" is the backspace.

The return stack grows downward from the user

area toward the terminal buffer. Forty-eight

bytes are sufficient. The origin is in RO

(R-zero) and is loaded from a boot-up literal.

The computation stack grows downward from the

terminal buffer toward the dictionary, which

grows upward. The origin of the stack is

is in variable SO (S-zero) and is loaded from

a boot-up literal.

After a cold start, the user variables contain

the addresses of the above memory assignments.

An advanced user may relocate while the

system is running. A newcomer should alter

the startup literals and execute COLD. The

word +ORIGIN is provided for this purpose.

+ORIGIN gives the address byte or word rel­

ative to the origin depending on the computer

addressing method. To change the backspace

to contol H type:

HEX 08 OE +ORIGIN (byte addresses)

6.0 DOCUMENTATION SUMMARY

The following manuals are in print:

Caltech FORTH Manual, an advanced manual with

internal details of Forth. Has some implem­

entation peculiarities. Approx. $6.50 from

the Caltech Book Store, Pasadena, CA.

Kitt Peak Forth Primer, $20.00 postpaid from

the Forth Interest Group, P. o. Box 1105,

San Carlos, CA 94070.

microFORTH Primer, $15.00 Forth, Inc.

815 Manhattan Ave. Manhattan Beach, CA 90266

Forth Dimensions, newsletter of the Forth

Interest Group, $5.00 for 6 issues including

membership. F.I.G. P.o. Box 1105, San Carlos,

CA. 94070

FORTH INTEREST GROUP • • • • • P. 0. Box 1105 .• • • • • San Carlos, Ca. 94070
/ j

23

:::
0

-4

::c

z -4

g m

-4

G>

:::
0

0 c ., 0 :-o

0 a:
J

0 X

..

.....
....

0 U
"l

• • • • • U
>

Q

)
::

J

("
)

Q
)
~

0 (/
)

("
)

Q
)

1.
0
~

0 25

~

L
I
~
I
T

~

FI
RS

T
--

--
'>

U
P
~

R/
1

--
--

:>

R
P

--
--

:;
..

s
fl'

~

s p

-
-
-
?

D
P

--

--
-:

;.

ST
A

N
D

A
R

D

fi
g

-F
O

R
T

H

~
E
~
O
R
Y

~
A
P

D
IS

C

BU
FF

ER
S

r
~E·

 AR
EA

1

! RE
TU

RN

/
ST

A
C

K

/
/

,.,
 -
fE

R~
IN

Al

/
/

BU
FF

ER

/ I
!

STA
~K

•
•

ul

~
U
S
E

~
P
R
E
V

}
IN

~
T
I
B

I
TE

X
T

B
U

FF
ER

ml

c
:
;
-
-

PA
D

''W
O

R
D

"
BU

FF
ER

I
DIO

~NA
RY

1

I B
O

O
T

-U
P

Ll
 T

ER
A

LS

J

..;--
-0

T

O
R

IG
IN

65
02

fi

g
-F

O
R

T
H

~
E
~
O
R
Y

~
A
P

U
M

IT

-
-
?

.
.
-
-
-
-
-
-
-
-
-
-
,

-
-
E

-
-

U
SE

D
IS

C

BU
FF

ER
S

<
--

-
PR

EY

FI
RS

T
-
-
>

U
P
~
 [
~

U
SE

R
A

RE
A

I

r-
-~
EX
T-
~~
FF
;R

.I
~

PA
D

D
P

--
-;

;.
.

''W
O

R
D

"
BU

FF
ER

D
IC

TI
O

N
A

R
Y

$2
00

B

O
O

T
-u

P
 L

IT
ER

A
LS

I
l8

1F
F

--
-?

-
I
l

RE
TU

RN

-
-

ST
A

C
K

-
-
-

R
 p

~
 I

-

T
E

R
M

IN
A

L

-
-
-

BU
FF

ER

-
$0

10
0

--
?

>
--

Z
-P

A
G

E

[
U

P
~~

-~

-
]

S
fl

SP

--
-;

;.
.

~

l
ST

A
C

K

$0
09

F
-

$0
01

0

~

fl
-t

O
R

IG
IN

}
IN

'"
E

-
-

JIB

SP

IS

X

RE
G

IS
TE

R
RP

IS

ST

A
C

K
 P

O
IN

TE
R

O

F
C

PU

fig-FORTH GLOSSARY

This glossary contains all of the word def­
initions in Release l of fig-FORTH. The
definitions are presented in the order of
their ascii sort.

The first line of each entry shows a symbolic
description of the action of the proceedure on
the parameter stack. The symbols indicate the
order in which input parameters have been
placed on the stack. Three dashes "---"
indicate the execution point; any parameters
left on the stack are listed. In this
notation, the top of the stack is to the
right.

The symbols include:

addr
b
c
d

f
ff
n
u

t f

memory address
8 bit byte (i.e. hi 8 bits zero)
7 bit ascii character (hi 9 bits zero)
32 bit signed double intege~

most significant portion with sign
on top of stack.

boolean flag. O=false, non-zero=true
boolean false flag=O
16 bit signed integer number
16 bit unsigned integer
boolean true flag=non-zero

The capital letters on the right show defin­
ition characteristics:

c

E
LO
Ll
p

u

May only be used within a colon defin­
ition. A digit .indicates number
of memory addresses used, if other
than one.

Intended for execution only.
Level Zero definition of FORTH-78
Level One definition of FORTH-78
Has precedence bit set.

even when compiling.
A user variable.

Will execute

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On
8 bit data bus computers, the high byte of
a number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithemetic is implicitly 16 bit signed
integer math, with error and under-flow
indication unspecified.

FORTH INTEREST GROUP P. 0. Box 1105 ····· San Carlos, Ca. 94070

!CSP

II

II>

liS

(. ")

(;CODE)

FORTH

n addr
Store 16 bits of n at address.
Pronounced "store".

LO

Save the stack position in CSP. Used
as part of the compiler security.

dl d2 LO
Generate from a double number dl, the
next ascii character which is placed
in an output string. Result d2 is
the quotient after division by BASE,
and is maintained for further pro­
cessing. Used between <II and #>.
See 1/S.

d addr count LO
Terminates numeric output conversion
by dropping d, leaving the text
address and character count suitable
for TYPE.

d 1 d2 LO
Generates ascii text in the text out­
put buffer, by the use of II, until
a zero double number n2 results.
Used between <# and #>.

addr
Used in the form:

nnnn

P,LO

Leaves the parameter field address
of dictionary word nnnn. As a comp­
iler directive, executes in a colon­
definition to compile the address
as a literal. If the word is not
found after a search of CONTEXT and
CURRENT, an appropriate error mess­
age is given. Pronounced "tick".

Used in the form:
(ecce)

Ignore a comment that will be
delimited by a right parenthesis

P, LO

on the same line. May occur during
execution or in a colon-definition.
A blank after the leading parenthesis
is required.

C+
The run-time proceedure, compiled by
."which transmits the following
in-line text to the selected output
device. See • "

c
The run-time proceedure, compiled by
;CODE, that rewrites the code field
of the most recently defined word to
point to the following machine code
sequence. See ;CODE.

(+LOOP)

(ABORT)

(DO)

(FIND)

(LINE)

(LOOP)

(NUMBER)

*I

*/MOD

n C2
The run-time proceedure compiled
by +LOOP, which increments the loop
index by n and tests for loop comple­
tion. See +LOOP.

Executes after an error when WARNING
is -1. This word normally executes
ABORT, but may be altered (with care)
to a user's alternative proceedure.

c
The run-time proceedure compiled by
DO which moves the loop control para­
meters to the return stack. See DO.

addrl addr2 --- pfa b tf (ok)
addrl addr2 ff (bad)

Searches the dictionary starting at
the name field address addr2, match­
ing to the text at addrl. Returns
parameter field address, length
byte of name field and boolean true
for a good match. If no match is
found, only a bool~an false is left.

nl n2 addr count
Convert the line number nl and the
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

C2
The run-time proceedure compiled by
LOOP which increments the loop index
and tests for loop completion.
See LOOP.

dl addrl d2 addr2
Convert the ascii text beginning at
addrl+l with regard to BASE. The new
value is accumulated into double
number dl, being left as d2. Addr2
is the address of the first uncon­
vertable digit. Used by NUMBER.

nl n2 prod LO
Leave the signed product of two
signed numbers.

n1 n2 n3 n4 LO
Leave the ratio n4 = nl*n2/n3
where all are signed numbers. Ret­
ention of an intermediate 31 bit
product permits greater accuracy than
would be available with the sequence:

nl n2 * n3 I

n1 n2 n3 n4 nS LO
Leave the quotient nS and remainder
n4 of the operation nl*n2/n3
A 31 bit intermediate product is
used as for */.

INTEREST GROUP P. 0. Box 110 5 San Carlos, Ca. 94070 7

+

+!

+-

+BUF

+LOOP

nl n2 sum LO
Leave the sum of nl+n2.

n addr LO
Add n to the value at the address.
Pronounced "plus-store".

nl n2 n3
Apply the sign of n2 to nl. which
is left as n3.

addl addr2 f
Advance the disc buffer address addrl
to the address of the next buffer
addr2. Boolean f is false when addr2
is the buffer presently pointed to
by variable PREV.

nl (run)
addr n2 (compile) P,C2,LO

Used in a colon-definition in the
form:

DO nl +LOOP
At run-time, +LOOP selectively
controls branching back to the cor­
responding DO based on nl, the loop
index and the loop limit. The signed
increment nl is added to the index
and the total compared to the limit.
The branch back to DO occurs until
the new index is equal to or greater
than the limit (nl>O), or until the
new index is equal to or less than
the limit (nl<O). Upon exiting the
loop, the parameters are discarded
and execution continues ahead.

At compile time, +LOOP compiles
the run-time word (+LOOP) and the
branch offset computed from HERE to
the address left on the stack by
DO. n2 is used for compile time
error checking.

-DUP

-FIND

nl nl (if zero)
nl nl nl (non-zero) LO

Reproduce nl only if it is non-zero.
Th~s is usually used to copy a value
just before IF, to eliminate the need
for an ELSE part to drop it.

pfa b tf (found)
ff (not found)

Accepts the next text word (delimited
by blanks) in the input strean to
HERE, and searches the CONTEXT and
then CURRENT vocabularies for a
matching entry. If found, the
dictionary entry's parameter field
address, its length byte, and a
boolean true is left. Otherwise,
only a boolean false is left.

-TRAILING addr nl addr n2

II

Adjusts the character count nl of a
text string beginning address to
suppress the output of trailing
blanks. i.e. the characters at
addr+nl to addr+n2 are blanks.

n LO
Print a number from a signed 16 bit
two's complement value, converted
according to the numeric BASE.
A trailing blanks follows.
Pronounced "dot".

P,LO
Used in the form:

." ecce"
Compiles an in-line string ecce
(delimited by the trailing ") with an
execution proceedure to transmit the
text to the selected output device.
If executed outside a definition, "
will immediately print the text until
the final "• The maximum number of
characters may be an installation
dependent value. See (.").

+ORIGIN n addr

-->

FORTH

Leave the memory address relative .• LINE
by n to the origin parameter area.
n is the minimum address unit, either
byte or word. This definition is used
to access or modify the boot-up
parameters at the origin area.

n LO
Store n into the next available dict­
ionary memory cell, advancing the
dictionary pointer. (comma)

nl n2 diff
Leave the difference of nl-n2.

Continue interpretation with the
next disc screen. (pronounced
next-screen).

LO

P,LO

.R

I

/MOD

line scr
Print on the terminal device, a line
of text from the disc by its line and
screen number. Trailing blanks are
suppressed.

nl n2
Print the number nl right aligned in
a field whose width is n2. No
following blank is printed.

nl n2 quat LO
Leave the signed quotient of nl/n2.

nl n2 rem quot LO
Leave the remainder and signed
quotient of nl/n2. The remainder has
the sign of the dividend.

INTEREST GROUP 0. 0 0. P. 0. Box 110 5 San Carlos, Ca. 94070

0 1 2 3

0<

0=

OBRANCH

1+

2+

;CODE

FORTH

n
These small numbers are used so often
that is is attractive to define them
by name in the dictionary as const­
ants.

n f LO
Leave a true flag if the number is
less than zero (negative), otherwise
leave a false flag.

n f LO
Leave a true flag is the number is
equal to zero, otherwise leave a
false flag.

f C2
The run-time proceedure to condition­
ally branch. If f is false (zero),
the following in-line parameter is
added to the interpretive pointer to
branch ahead or back. Compiled by
IF, UNTIL, and WHILE.

nl n2 Ll
Increment nl by 1.

nl n2
Leave nl incremented by 2.

P,E,LO
Used in the form called a colon­
definition:

: ecce
Creates a dictionary entry defining
ecce as equivalent to the following
sequence of Forth word definitions

until the next ';' or ';CODE'.
The compiling process is done by
the text interpreter as long as
STATE is non-zero. Other detaila
are that the CONTEXT vocabulary is
set to the CURRENT vocabulary and
that words with the precedence bit
set (P) are executed rather than
being compiled.

P,C,LO
Terminate a colon-definition and
stop further compilation. Compiles
the run-time ;S.

P,C,LO
Used in the form:

ecce ;CODE
assembly mnemonics

Stop compilation and terminate a new
defining word ecce by compiling
(;CODE). Set the CONTEXT vocabulary
to ASSEMBER, assembling to machine
code the following mnemonics.

When ecce later executes in the form:
ecce nnnn

the word nnnn will be created with
its execution proceedure given by
by the machine code·following ecce.
That is, when nnnn is executed, it
does so by jumping to the code after
nnnn. An existing defining word
must exist in ecce prior to ;CODE.

;S

<

<#

<BUILDS

>

>R

.?COMP

?CSP

P,LO
Stop interpretation of a screen.
;S is also the run-time word compiled
at the end of a colon-definition
which returns execution to the
calling proceedure.

nl n2 f LO
Leave a true flag if nl is less than
n2; otherwise leave a false flag.

LO
Setup for pictured numeric output
formatting using the words:

<II II /Is SIGN II>
The conversion is done on a double
number producing text at PAD.

C,LO
Used within a colon-definition:

ecce <BUILDS
DOES>

Each time ecce is executed, <BUILDS
defines a new word with a high-level
execution proceedure. Executing ecce
in the form:

ecce nnnn
uses <BUILDS to create a dictionary
entry for nnnn with a call to the
DOES> part for nnnn. When nnnn is
later executed, it has the address of
its parameter area on the stack and
executes the words after DOES> in
ecce. <BUILDS and DOES> allow run­
time proceedures to written in high­
level rather than in assembler code
(as required by ;CODE).

nl n2 f LO
Leave a true flag if nl=n2; other­
wise leave a false flag.

nl n2 f LO
Leave a true flag if nl is greater
than n2; otherwise a false flag.

n C,LO
Remove a number from the computation
stack and place as the most access­
able on the return stack. Use should

·be balanced with R> in the same
definition.

addr
Print the value contained at the
address in free format according to
the current base.

LO

Issue error message if not compiling.

Issue error message if stack position
differs from value saved in CSP.

INTEREST GROUP • o o • • P. 0. Box 110 5 · · · · · San Carlos, Ca. 94070
9

?ERROR

?EXEC

?LOADING

f n
Issue an error message number n, if
the boolean flag is true.

Issue an error message if not exec­
uting.

Issue an error message if not loading

?PAIRS nl nZ

?STACK

?TERMINAL

@

ABORT

Issue an error message if nl does not
equal n2. The message indicates that
compiled conditionals do not match.

Issue an error message is the stack
is out of bounds. This definition
may be installation dependent.

f
Perform a test of the terminal key­
board for actuation of the break key.
A true flag indicates actuation.
This definition is installation
dependent.

addr n LO
Leave the 16 bit contents of address.

LO
Clear the stacks and enter the exec­
ution state. Return control to the
operators terminal, printing a mess­
age appropriate to the installation.

ABS n u LO

AGAIN

ALLOT

AND

Leave the absolute value of n as u.

addr n --- (compiling) P,CZ,LO
Used in a colon-definion in the form:

BEGIN AGAIN
At run-time, AGAIN forces execution
to return to corresponding BEGIN.
There is no effect on the stack.
Execution cannot leave this loop
(unless R> DROP is executed one
level below).

At compile time, AGAIN compiles
BRANCH with an offset from HERE to
~ddr. n is used for compile-time
error checking.

n LO
Add the signed number to the diction­
ary pointer DP. May be used to
reserve dictionary space or re-origin
memory. n is with regard to computer
address type (byte or word).

nl n2 nZ LO
Leave the bitwise logical and of nl
and n2 as n3.

B /BUF

B/SCR

BACK

BASE

BEGIN

BL

BLANKS

BLK

BLOCK

n
This constant leaves the number of
bytes per disc buffer, the byte count
read from disc by BLOCK.

n
This constant leaves the number of
blocks per editing screen. By con­
vention, an editing screen is 1024
bytes organized as 16 lines of 64
characters each.

addr
Calculate the backward branch offset
from HERE to addr and compile into
the next available dictionary memory
address.

addr U,LO
A user variable contaning the current
number base used for input and out­
put conversion.

addr n (compiling)
a colon-definition in

UNTIL
AGAIN

P,LO
form: Occurs in

BEGIN
BEGIN
BEGIN WHILE REPEAT

At run-time, BEGIN marks the start
of a sequence that may be repetitive­
ly executed. It serves as a return
point from the correspoinding UNTIL,
AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur
if the top of the stack is false;
for AGAIN and REPEAT a return to
BEGIN always occurs.

At compile time BEGIN leaves its ret­
urn address and n for compiler error
checking.

c
A constant that leaves the ascii
value for "blank".

addr count
Fill an area of memory begining at
addr with blanks.

addr U,LO
A user variable containing the block
number being interpreted. If zero,
input is being taken from the term­
inal input buffer.

n addr LO
Leave the memory address of the block
buffer containing block n. If the
block is not already in memory, it is
transferred from disc to which ever
buffer was least recently written.
If the block occupying that buffer
has been marked as updated, it is re­
written to disc before block n is
read into the buffer. See also
BUFFER, R/W UPDATE FLUSH

FORTH INTEREST GROUP o • • • • P. 0. Box 1105 · o • • • San Carlos, Ca. 94070
10

BLOCK-READ
~LOCK-WRITE These are the preferred names

for the installation dependent code
to read and write one block to the
disc.

BRANCH

BUFFER

c!

c,

C@

CFA

CMOVE

COLD

C2,LO
The run-time proceedure to uncondit­
ionally branch. .An in-line offset
is added to the interpretive pointer
IP to branch ahead or back. BRANCH
is compiled by ELSE, AGAIN, REPEAT.

n addr
Obtain the n~xt memory buffer, ass­
igning it to block n. If the con­
tents of the buffer is marked as .up­
dated, it is written to the disc
The block is not read from the disc.
The address left is the first cell
within the buffer for data st~rage.

b addr
Store 8 bits at address. On word
addressing computers, further spec­
ification is necessary regarding byte
addressing.

b
Store 8 bits of b into the next
available dictionary byte, advancing
the dictionary pointer. This is only
available on byte addressing comp­
uters, and should be used with
caution on byte addressing mini­
computers.

addr b
Leave the 8 bit contents of memory
address. On word addressing comput­
ers, further specification is needed
regarding byte addressing.

pfa cfa
Convert the .parameter field address
of a definition to its code field
address.

from to count
Move the specified quantity of bytes
beginning at address from to address
to. The contents of address from
is moved first proceeding toward high
memory. Further specification is
necessary dn word addressing comp­
uters.

The cold start proceedure to adjust
the dictionary pointer to the min­
imum standard and restart via ABORT.
May be called from the terminal to
remove application programs and
restart.

COMPILE C2
When the word containing COMPILE
executes, the execution address of
the word following COMPILE is copied
(compiled) into the dictionary.
This allows specific compilation
situations to be handled in additon
to simply compling an execution
address (which the interpreter
already does).

CONSTANT n LO
A defining word used in the form:

n CONSTANT ecce
to create word ecce, with its para­
meter field containing n. When ecce
is later executed, it will push
the value of n to the stack.

CONTEXT addr O,LO

COUNT

CR

CREATE

.CSP

D+

D+-

D.

A user variable containing a pointer
t~ the vocabulary within which dict­
ionary searches will first begin.

addrl addr2 n LO
Leave the byte address addr2 and byte
count n of a mes~age text beginning
at address addrl. It is presumed
tha~ the f.irst byte at addrl contains
the text byte count and the actual
text starts with the second byte.
Typically COUNT is followed by TYPE.

Transmit a carriage ret~rn and line
feed to the selected output device.

A defining word used in the form:
CREATE ecce

by such words as CODE and CONSTANT
to create a dictionary header for
a Forth definition. The code field
contains the address of the words
parameter field. The new word is
created in the CURRENT vocablary.

LO

addr U
A user variable temporarily storing
the stack pointer position, for
compilation error checking.

dl d2 --- dsum
Leave the double number sum of two
double numbers.

dl n d2
Apply the sign of n to the double
number dl, leaving it as d2.

d L 1
Print a signed double number from a
32 bit two's complement value. The
high-order 16 bits are most access­
able on the stack. Conversion is
performed according to the current
BASE~ A blank follows. Pronounced
D-dot.

FORTH INTEREST GROUP • o • o • P. 0. Box 1105 •••• • San Carlos, Ca. 94070 II

D.R

DABS

DECINAL

d n
Print a signed double number d right
aligned in a field n characters wide.

d ud
Leave the absolute value ud of a
double number.

Set the numeric conversion BASE for
decimal input-output.

LO

DEFINITIONS Ll

DIGIT

DLIST

DLITERAL

DMINUS

Used in the form:
ecce DEFINITIONS

Set the CURRENT vocabulary to the
CONTEXT vocabulary. In the example,
executing vocabulary name ecce made
it the CONTEXT vocabulary and exec­
uting DEFINITIONS made both specify
vocabulary ecce.

c nl n2 tf (ok)
c nl ff (bad)

Converts the ascii character c (using
base nl) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only
a false flag.

List the names of the dictionary
entries in the CONTEXT vocabulary.

d d (executing)
d (compiling) P

If compiling, compile a stack double
number into a literal. Later execut­
ion of the definition containing the
literal will push it to the stack. If
executing, the number will remain on
the stack.

dl d2
Convert dl to its double number two's
complement.

DO

DOES>

DP

DPL

DRO
DRl

nl n2
addr n

Occurs in a
DO

(execute)
(compile)

colon-definition
LOOP

P,C2,LO
in form:

DO +LOOP
At run time, DO begins a sequence
with repetitive execution controlled
by a loop limit nl and an index with
initial value n2. DO removes these
from the stack. Upon reaching LOOP
the index is incremented by one.
Until the new index equals or exceeds
the limit, execution loops back to
just after DO; otherwise the loop
~arameters are discarded and execut­
ion continues ahead. Both nl and n2
are determined at run-time and may be
the result of other operations.
Within a loop 'I' will copy the

urrent value of the index to the
stack. See I, LOOP, +LOOP, LEAVE.

When compiling within the colon­
definition, DO compiles (DO), leaves
the following address addr and n for
later error checking.

LO
A word which defines the run-time
action within a high-level defining
word. DOES> alters the code field
and first parameter of the new word
to execute the sequence of compiled
word addresses following DOES>. Used
in combination with <BUILDS. When the
DOES> part executes it begins with
the address of the first parameter
of the new word on the stack. This
allows interpretation using this
area or its contents. Typical uses
include the Forth assembler, multi­
diminsional arrays, and compiler
generation.

addr U,L
A user variable, the dictionary
pointer, which contains the address
of the next free memory above the
dictionary. The value may be read by
HERE and altered by ALLOT.

addr U,LO
A user variable containing the number
of digits to the right of the decimal
on double integer input. It may also
be used hold output column location
of a decimal point, in user generated
formating. The default value on
single number input is -1.

Installation dependent commands to
select disc drives, by preseting
OFFSET. The contents of OFFSET is
added to the block number in BLOCK
to allow for this selection. Offset
is supressed for error text so that
is may always originate from drive 0.

FORTH INTEREST GROUP ·····P.O. Box 1105 oooo• San Carlos, Ca. 94070 ;2_;

DROP

DUMP

DUP

ELSE

EMIT

n
Drop the number from the stack.

addr
Print the
locations
addresses

n
contents of n memor~
beginning at addr. Both
and contertts are shown in

the current numeric base.

n n n
Duplicate the value on the stack.

addrl nl addr2 n2

LO

LO

LO

(compiling) P,C2,LO
Occurs within a colon-definition
in the form:

IF ELSE ENDIF
At run•time, ELSE executes after the
true part following IF. ELSE forces
execution to skip over the following
false part and resumes execution
after the ENDIF. It has no stack
effect.

At compile-time ELSE emplaces BRANCH
reserving a branch offset, leaves
the address addr2 and n2 for error
testing. ELSE also resolves the
pending forward branch from IF by
calculating the offset from addrl to
HERE and storing at addrl.

c LO
Transmit ascii character c to the
selected output device. OUT is
incremented for each charact~r
output.

EMPTY-BUFFERS LO
Mark all block-buffers as empty, not
necessarily affecting the contents.
Updated blocks are not written to the
disc. This is also an initialization
proceedure before first use of the
disc.

ENCLOSE addrl c
ddrl nl n2 n3

The text scanning primitive used by
WORD. From the text address addrl
and an ascii delimiting character c,
is determi.ned the byte offset to the
first non-delimiter character nl,
the offset to the first delimiter
after the text n2, and the offset
~o the first character not included.
This proceedure will not process past
an ascii 'null', treating it as an
unconditional delimiter.

END P,C2,LO
This is an 'alias' or duplicate
definition for UNTIL.

END IF

ERASE

ERROR

EXECUTE

EXPECT

FENCE

FILL

FIRST

addr n
Occurs in a

IF

(compile)
colon-definition

END IF

P,CO,LO
in fot"m:

IF ELSE ENDIF
At run-time, ENDIF serves only as the
destination of a forward branch from
IF or ELSE. It marks the conclusion
of the conditional structure. THEN
is another name for ENDIF. Both
names are supported in fig-FORTH. See
also IF and ELSE.

At compile-time, ENDIF computes the
forward branch offset from addr to
HERE and stores it at addr. n is
used for error tests.

addr n
Clear a region of memory to zero from
addr over n addresses.

line in blk
Execute error notification and re­
start of system. WARNING is first
examined. If 1, the text of line n,
relative to screen 4 of drive 0 is
printed. This line number may be
positive or negative, and beyond just
screen 4. If WARNING•O, n is just
printed as a message number (non disc
installation). If WARNING is -1,
the definition (ABORT) is executed,
which executes the system ABORT. The
user may cautiously modify this
execution by altering (ABORT).
fig-FORTH saves the contents of IN
and BLK to assist in determining the
location of the error. Final action
is execution of QUIT.

addr
Execute the definition whose code
field address is on the stack. The
code field address is also called
the compilation address.

addr count LO
Transfer characte~s from the terminal
to address, u_ntil a "return" or the
count of characters have been rec­
eived. One or more nulls are added
at the end of the text.

addr
A user variable containing an
address below which FORGETting is
trapped. To forget below this point
the user must alter the contents of
FENCE.

addr quan b
Fill memory at the address with the
specified quantity of bytes b.

n
A constant that leaves the address
of the first (lowest). block buffer.

u

FORTH INTEREST GROUP o o o o o P. 0. Box 1105 u .. o San Carlos, Ca. 94070 ji]

FLD

FORGET

FORTH

HERE

HEX

HLD

HOLD

I

ID.

FORTH

addr u
A user variable for control of number
output field width. Presently un­
used in fig-FORTH.

E,LO
Executed in the form:

FORGET ecce
Deletes definition named ecce from
the dictionary with all entries
physically following it. In fig­
FORTH, an error message will occur if
the CURRENT and CONTEXT vocabularies
are no~ currently the same.

P,Ll
The name of the primary vocabulary.
Execution makes FORTH the CONTEXt
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will exec­
ute during the creation of a colon­
definition, to select this vocabulary
at compile time.

addr LO
Leave the address of the next avail­
able dictionary location.

Se~ the numeric conversion base to
sixteen (hexadecimal).

addr

LO

LO
A user variable that holds the addr~
ess of the latest character of text
during numeric output conversion.

c LO
Used between <# and #> to insert
an ascii character into a pictured
numeric output string.
e.g. 2E HOLD will place a
decimal point.

n C,LO
Used within a DO-LOOP to copy the
loop index to the stack. Other
use is implementation dependent.
See R.

addr
Print a definition's name from its
name field address.

IF

IMMEDIATE

IN

INDEX

INTERPRET

f (run-time)
addr n (compile) P,C2,LO

Occurs is a colon-definition in form:
IF (tp) ••• ENDIF
IF (t p) •• • ELSE (f p) • • • END IF

At run-time, IF selects execution
based on a boolean flag. If f is
true (non-zero), execution continues
ahead thru the true part• If f is
false (zero), execution skips till
just after ELSE to execute the false
part. After either part, execution
resumes after ENDIF. ELSE and its
false part are optional.; if missing,
false execution ski~s to just after
END IF.

At compile-time IF compiles OBRANCH
and reserves space for an offset
at ad.dr. addr and n are used later
for resolution of the offset and
error testing.

Mark the most reseritly made definit­
ion so that when encountered at
compile time, it will b~ executed
rather than being compiled. i.e. the
precedence bit in its header is set•
This method allows definitions to
handle unusual compiling situations,
rather than build them into the
fundamental compiler. The user may
force compilation of an immediate
definition by preceeding it with
[COMPILE).

addr LO
A user variable containing the byte
offset within the current inp~t text
buffer (terminal or disc) from which
the next text will be accepted. WORD
uses and moves the value of IN.

from to
Print the first line of each screen
over the range from, to. This is
used to view the comment lines of an
area of text on disc screens.

The outer ~ext interpreter whi~h
sequentially executes or compiles
text from the input stream (terminal
or disc) depending on STATE. If the
word name cannot be found after
a search of CONTEXT and then CURRENT
it is converted to a number according
to the current base. That also fail­
ing, an error message echo~ng the
name with a " ?" will be given.
Text input will be taken according to
the convention for WORD. If a decimal
point is found a~ part of a number,
a double number value will be left.
The decimal point has no other pur­
pose than to force this action.
See NUMBER.

INTEREST GROUP · · · · o P. 0. Box 110 5 o • o o o San Carlos, Ca. 94070

KEY

LATEST

LEAVE

LFA

LIMIT

LIST

c LO
Leave the ascii value of the next
terminal key struck.

addr
Leave the name field address of the
topmost word in the CURRENT vocabul­
ary.

C,LO
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of
the index. The index itself remains
unchanged, and exeeution prodeeds
normally until LOOP or +LOOP is
encountered.

pf a 1f a
Convert the parameter field address
of a dictionary definition to its
link field address.

n
A constant leaving the address just
above the highest memory available
for a disc buffer. Usually this is
the highest system memory.

n LO
Display the ascii text of screen n
on the selected output device. SCR
contains the screen number during and
after this process.

LIT n C2,LO
Within a colon-definition, LIT is
automatically compiled before each
16 bit literal number encountered in
input text. Later execution of LIT
causes the con~ents of the next
dictionary address to be pushed to
the stack.

LITERAL n (compiling) P,C2,LO

LOAD

If compiling, then compile the stack
value n as a 16 bit literal. This
definition is immediate so that it
~ill execute during a colon defin­
ition. The intended use is:

: xxx [calculate] LITERAL
Compilation is suspended for the
compile time calculation of a value.
Compilation is reusumed and LITERAL
compiles this value.

n LO
Begin interpretation of screen n.
Loading will terminate at the end of
the screen or at ;S. See ;S and -->.

LOOP

M*

M/

M/MOD

MAX

MESSAGE

MIN

MINUS

MOD

MON

addr n -~- (compiling) P,C2,tO
Occurs in a colon-definition in form:

DO LOOP
At run-time, LOOP selectively c6nt­
rols branching back to the correspon­
ding DO based on the loop index and
limit. The loop index is incremented
by one and compared to the limit. The
branch back to DO occurs until the.
index equals or exceeds the limit;
at that time, the parameters are
discarded and execution continues
ahead.

At compile-time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. n is used for error testing.

nl n2 d
A mixed magnitude math operation
which leav~s the double numb~r signed
product of two signed number.

d nl n2 n3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double
number dividend and divisor nl. T~e
remainder takes its sign from the
dividend.

udl u2 u3 ud4
An unsigned mixed magnitude math
operation which leaves a double
quotient ud4 and remainder u3, from
a double dividend tidl and single
divisor u2.

nl n2 max LO
Leave the greater of two numbers.

n
Print on the selected output device
th·e text of 1 ine n relative to screen
4 of drive 0. n may be positive or
negative. MESSAGE may be used to
print incidental text such as report
headers. If WARNING is zero, the
message will. simply be printed as
a number (disc un-available).

nl n2 min LO
Leave the smaller of two numbers.

nl n2 LO
Leave the two's complement of a
number.

nl n2 mod
Leave the remainder of nl/n2, with
the same sign as nl. ·

Exit to the system monitori leaving
a re-entry to Forth, if possible.

LO

FORTH INTEREST GROUP · · · · · P. 0. Box 110 5 o o • • • San Carlos, Ca. 94070

MOVE

NEXT

NFA

NUMBER

OFFSET

OR

OUT

OVER

FORTH

addrl addr2 n
Move the contents of n memory cells
(16 bit contents) beginning at addrl
into n cells beginning at addr2.
The contents of addrl is moved first.
This definition is •ppropriate on
on word addressing computers.

This is the inner interpreter that
uses the interpretive pointer IP to
execute compiled Forth definitions.
It {s not dire~tly executed but is
the return point for all code pro­
ceedures. It acts by fetching the
address pointed by IP, storing this
value in register w. It then jumps
to the address pointed to by the
address ~dinted to by w. W points to
the code field of a definition which
contains the address of· the code
which executes for that definition.
This usage of indirect threaded code
is a major contributor to the power,
portability, and extensibility of
Forth. Locations of IP and W are
computer specific.

pfa nfa
Convert the parameter field address
of ,a definiti.on to its name field.

addr d
Convert a character string left at
addr with a preceeding count, to
a signed double number, using the
current numeric base. If a decimal
point is encountered in the text, its
position will be given in DPL, but
no other effect occurs. If numeric
conversion is not possible, an error
message will be given.

addr
A·user variable which may contain
a block offset to disc drives. The
contents of OFFSET is added to the
stack number by BLOCK. Messages

u

by MESSAGE are independent of OFFSET.
See BLOCK, DRO, DRl, MESSAGE.

nl n2 or LO
Leave the bit~wise logical or of two
16. bit values.

addr u
A user variable that contains a value
incremented by EMIT. The user may
alter and examine OUT to control
display formating.

nl n2 --- · nl n2 nl LO
Copy ~he second stack value, placing
it as the new top.

PAD

PFA

POP

PREV

PUSH

PUT

QUERY

QUlT

R

Rfl

addr LO
Leave the address of the text output
buffer, which is a fixed offset above
HERE.

nfa pfa
Convert the name field address of
a compiled definition to its para•
meter field address.

The code sequence to remove a stack
value and return to NEXT. POP is
not directly executable, but is a
Forth re-entry point after machine
code.

addr
A variable containing the address of
the disc buffer most recently ref­
erenced. The UPDATE command marks
this buffer to be later written to.
disc.

This code sequence pushes machine
registers to the computation stack
and returns to NEXT. It is not
directly executable, but is a Forth
re-entry point after machine code~

This code sequence stores machine
register contents over the topmost
computation stack value and returns
to NEXT. It is not directly exec­
utable, but is a Forth re-entry point
after machine code.

Input 80 characters of text (or until
a "return") from the operators
terminal. Text is positioned at the
address contained in TIB with IN
set to zero.

Ll
Clear th• return stack, stop compil­
ation, and return control to the
operators terminal. No message
is given.

n
Copy the top of the return stack to
the computation stack.

addr U
A user variable which may co~tain
the location of an editing cursor,
or other file related function.

INTEREST GROUP o o o • • P. 0. Box 110 5 · · · · · San Carlos, Ca. 94070

R/W

R>

RO

REPEAT

\.
ROT

RP!

s->D

so

SCR

SIGN

FORTH

addr blk f
The fig-FORTH standard disc read­
write linkage. addr specifies the
source or destination block buffer,
blk is the sequential number of
the referenced block; and f is a
flag for f•O write and f•l read.
R/W determines the location on mass
storage, performs the read-write and
performs any error checking.

n LO
Remove the top value from the return
stack and leave it on the computation
stack. See >R and R.

addr u
A user variable containing the
initial location of the return stack.
Pronounc~d R-zero. See RP!

addr n (compiling) P.C2
Used within a colon-definition in the
form:

BEGIN WHILE REPEAT
At run-time, REPEAT forces an
unconditional branch back to just
after the correspoinding BEGIN.

At compile-time, REPEAT compiles
BRANCH and the offset from HERE to
addr. n is used for error testing.

n1 n2 n3 n2 n3 nl LO
Rotate the top three values on the
stack, bringing the third to the top.

A computer dependent proceedure to
initialize the return stack pointer
from user variable RO.

n d
Sign extend a single number to form
a double number.

addr
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See SP!

addr

u

u
A user variable containing the screen
number most recently reference by
LIST.

n d d LO
Stores an ascii "-" sign just before
a converted numeric output string
in the text output buffer when n is
negative. n is discarded, but double
number d is maintained. Must be
used between <# and #>.

SMUDGE

SP!

SP@

SPACE

SPACES

STATE

SWAP

TASK

THEN

TIB

TOGGLE

Used durirg word definition to toggle
the "smudge bit" in a definitions'
name field. This prevents an un­
completed definition from being found
during dictionary searches, until
compiling is completed without error.

A computer dependent proceedure to
initialize the stack pointer from
so.

addr
A computer dependent pt;oceed,ure to
return the address of the stack
position to the top of the stack,
as it was before SP@ was executed.
(e.g. 1 2 SP@ @ would
type 2 2 1)

LO
Transmit an ascii blank to the output
device.

n LO
Transmit n ascii blanks to the output
device.

addr LO,U
A user variable containg the compil­
ation state. A non-zero value
indicates compilation. The value
itself may be implementation depend­
ent.

nl n2 n2 nl LO
Exchange the top two values on the
stack.

A no-operation word which can mark
the boundary between applications.
By forgetting TASK and re-compiling,
an application can be discarded in
its entirety.

P,CO,LO
An alias for ENDIF.

addr
A user variable containing the addr­
ess of the terminal input buffer.

addr .b
Complement the contents of addr by
the bit pattern b.

u

TRAVERSE addrl n addr2
Move across the name field of a
fig-FORTH variable length name field.
addrl is the address of either the
length byte or the last letter.
If n•l, the motion is toward hi mem­
ory; if n•-1, the motion is toward
low memory. The addr2 resulting is
address of the other end of the name.

INTEREST GROUP o • o o • P. 0. Box 110 5 o • • • • San Carlos, Ca. 94070

\

TRIAD

TYPE

U*

U/

UNTIL.

UPDATE

USE

USER

scr
Display on the selected output device
the three screens which include that
numbered scr, begining with a screen
evenly divisible by three. Output
is suitable for source text records,
and includes a reference line at the
bottom taken fr~m line 15 of screen4.

addr count LO
Transmit count characters from addr
to the selected output device.

ul u2 ud
Leave the unsigned double number
product of t•o unsigned numbers.

ud u1 u2 u3
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsign•
ed double dividend ud and unsigned
divisor ul.

f (run-time)
addr n --- (compile) P,C2,LO

Occurs within a colon-definition in
the form:

BEGIN UNTIL
At run-time, UNTIL controls the cond­
itional branch back to the corres­
ponding BEGIN. If f is false, exec­
ution returns to just after BEGIN;
if true, execution continues ahead.

At compile-time, UNTIL compiles
(O~RANCH) and an offset from HERE
to addr. n is used for error tests.

LO
Marks the most recently referenced
block (pointed to by PREV) as
altered. The block will subsequently
be transferred automatically to disc
should its buffer be required for
storage of a different block.

addr
A variable containing the address of
the block buffer to use next, as the
least recently written.

n LO
A defining word used in the form:

n USER ecce
which ~reates a user variable ecce.
The parameter field of ecce contains
n as a fixed offset relative to
the user pointer register UP for
this user variable. When ecce is
later executed, it places the sum of
its offset and the user area base
address on the stack as the storage
address of that particular variable.

VARIABLE E,LU
A defining word used in the form:

n VARIABLE ecce
When VARIABLE is executed, it creates
the definition ecce with its para­
meter field initialized to n. When
ecce is later executed, the address
of its parameter field (containing n)
is left on the stack, so that a fetch
or store may access this location.

VOC-LINK addr U
A user variable containing the addr­
ess of a field in the definition of
the most recently created vocabulary.
All vo~abulary names are linked by
these fields to allow control for
FORGETting thru multiple vocabularys.

VOCABULARY E,L

VLIST

YARNING

WHILE

A defining word used in the form:
VOCABULARY ecce

to create a vocabulary definition
ecce. Subsequent use of ecce will
make it the CONTEXT vocabulary which
is searched first by INTERPRET. The
sequence "ecce DEFINITIONS" will
also make ecce th~ CURRENT vocabulary
into which new definitions are
placed.

In fig-FORTH, ecce will be so chained
as to include all definitions of the
vocabulary in which ecce is itself
defined. All vocabularys ulitmately
chain to ~orth. By convention,
vocabulary names a.re to be declared
IMMEDIATE. See VOC-LINK.

List the names of the defin1tions in
the context vocabulary. "Break" will
terminate the listing.

addr
A user variable containing a value
controlling messages. If • 1

u

disc is present, and screen 4 of
drive 0 is the base location for
messages. If • 0, no. disc is present
and messages will. be presented by
number. If • -1, execute (ABORT) for
a user specified proceedure.
See MESSAGE, ERROR.

f (run-time)
ad1 n1 adl nl ad2 n2 P,C2

Occurs in a colon-definition in the
form:

BEGIN ••• WHILE (tp) ••• REPEAT
At run-time, WHILE selects condition­
al execution based on boolean flag f.
If f is true (non-zero), WHILE cont­
intues execution of the true part
thru to REPEAT, which then branches
back to BEGIN. If f is false (zero),
execution skips to just after REPEAT,
exiting the structure.

At compile time, WHILE emplaces
(OBRANCH) and leaves ad2 of the res­
erved offset. The stack values will
be resolved by REPEAT.

FORTH INTEREST GROUP ···· · P. 0. Box 1105 ····· San Carlos, Ca. 94070 ;S

WIDTH

WORD

X

addr U
In fig-FORTH, a user variable cont­
aining the maximum number of letters
saved in the compilation of a
definitions• name. It must be 1 thru
31, with a default value of 31. The
name character count and i~s natural
characters are saved, up to the
value in WIDTH. The value may be
changed at any time within ~he above
limits.

c LO
Read the next text characters from
the input stream being interpreted,
until a delimiter c is found, storing
the packed character string begining·
at the dictionary buffer HERE. WORD
leaves the character count in the
first· byte, the characters, and ends
with two or more blank~. Leading
occurances of c are ignored. If BLK
is ~ero, text is taken from the
terminal input buffer, otherwise from
the disc block stored, in BLK.
See BLK, IN.

This is pseudonym for the "nu~l"
or dictionary entry for a name of
one character of ascii null. I~
is the execution proceedure to term­
inate interpretation of a line of
text from the terminal or within
a disc buffer, as both buffers always
have a null a~ the end.

XOR nl n2 xor Ll

fCOMPILE]

FORTH

Leave the bitwise logical excluaive­
or of two values.

P,I,.l
Used in a colon-definition in form:

: xxx [words J more ;
Suspend compilation. The words after
[are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compil-
ation with]. See LITERAL,].

P,C
Used in a colon-definition in form:

xxx [COMPILE] FORTH ;
[COMPILE] will force ~he compilation
of an immediate defininition,
that would otherwise execute
during compilation. The above
example will select the FORTH
vocabulary when xxx executes, rather
than at compile time.

Ll
Resume compilation, to the completion
of a colon-definition •. See [.

INTEREST GROUP . · o o o • P. 0. Box 1105 ···· · San Carlos, Ca. 94070

(
'··

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
14
15

SCR
0
1
2
3
4
5
6
7
8
9

10
11
1 2
13
14
15

SCR
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

II 3
********************** fig-FORTH MODEL **********************

Through the courtesy of

FORTH INTEREST GROUP
P. O. BOX 1105

SAN CARLOS, CA. 94070

RELEASE 1
WITH COMPILER SECURITY.

AND
VARIABLE LENGTH NAMES

Further distribution must include the above notice.

II 4
(ERROR MESSAGES)
EMPTY STACK
DICTIONARY FULL
HAS INCORRECT ADDRESS MODE
ISN'T UNIQUE

DISC RANGE ?
FULL STACK
DISC ERROR

FORTH INTEREST GROUP

II 5
(ERROR MESSAGES)
COMPILATION ONLY, USE IN DEFINITION
EXECUTION ONLY
CONDITIONALS NOT PAIRED
DEFINITON NOT FINISHED
IN PROTECTED DICTIONARY
USE ONLY WHEN LOADING
OFF CURRENT EDITING SCREEN
DECLARE VOCABULARY

MAY 1, 19 79

FORTH INTEREST GROUP MAY 1, 19 7 9

CODE LIT
LABEL PUSH
l.ABEL PUT
l.ABEL NEXT

(PUSH FOLLOWING LITERAL TO STACK
(PUSH ACCUM AS HI-BYTE, ML STACK AS LO-BYTE

(REPLACE BOTTOM WITH ACCUM. AND ML STACK
(EXECUTE NEXT FORTH ADDRESS, MOVING IP

HERE <CLIT> HERE 2+ , (MAKE SILENT WORD
ITEMS FROM STACK TO 'N' AREA OF Z-PAGE

(EXECUTE A WORD BY ITS CODE FIELD
{ ADDRESS ON THE STACK

{ ADJUST IP BY IN-LINE 16 BIT LITERAL
{ IF BOT IS ZERO, BRANCH FROM LITERAL

{ INCREMENT LOOP INDEX, LOOP UNTIL => LIMIT

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)-

LABEL SETUP (MOVE
CODE EXECUTE

CODE BRANCH
CODE OBRANCH
CODE (LOOP)
CODE (+LOOP)
CODE (DO)
CODE I
CODE DIGIT

CODE
CODE

(FIND)
ENCLOSE
ADDR-4,
EMIT
KEY

{ INCREMENT INDEX BY STACK VALUE +/-

(
CODE
CODE
CODE
CODE

(MOVE TWO STACK ITEMS TO RETURN STACK
(COPY CURRENT LOOP INDEX TO STACK

(CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM
(IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM;

(OTHERWISE FALSE-BOTTOM.
(HERE, NFA ••• PFA, LEN BYTE, TRUE; ELSE FALSE

(ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH
AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-1

{ PRINT ASCII VALUE ON BOTTOM OF STACK
(ACCEPT ONE TERMINAL CHARACTER TO THE STACK

('BREAK' LEAVES 1 ON STACK; OTHERWISE 0
(EXECUTE CAR. RETURN, LINE FEED ON TERMINAL

(WITHIN MEMORY; ENTER W/ FROM-3, T0-2, QUAN-1
(16 BIT MULTIPLICAND-2, 16 BIT MULTIPLIER-I

?TERMINAL
CR

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*).
*)
*)
*).
*)
*)
*)

CODE CMOVE
CODE U*

CODE U/

DE AND
D~ OR
DE XOR
DE SP@
DE SP!
DE RP!
DE ; S

(32 BIT UNSIGNED PRODUCT: LO WORD-2, HI WORD-I
(31 BIT DIVIDEND-2, -3, 16 BIT DIVISOR-I
(16 BIT REMAINDER-2, 16 BIT QUOTIENT-!

CODE LEAVE
XSAVE STX,

(LOGICAL BITWISE AND OF BOTTOM TWO ITEMS
{ LOGitAL BITWISE 'OR' OF BOTTOM TWO ITEMS

(LOGICAL 'EXCLUSIVE-OR' OF BOTTOM TWO ITEMS
(FETCH STACK POINTER TO STACK

(LOAD SP FROM 'SO'
(LOAD RP FROM RO

(RESTORE IP REGISTER FROM RETURN STACK
(FORCE EXIT OF DO-LOOP BY SETTING LIMIT

TSX, R LDA, R 2+ STA, (TO INDEX
DE >R
DE R>
DE R
DE 0=
DE 0<
DE +
DE D+

MINUS
DMINUS
OVER
DROP

C DE SWAP
C DE DUP

(MOVE FROM COMP. STACK TO RETURN STACK
(MOVE FROM RETURN STACK TO COMP. STACK

(COPY THE BOTTOM OF RETURN STACK TO COMP. STACK
(REVERSE LOGICAL STATE OF BOTTOM OF STACK

{ LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE
{ LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS

(ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE
(TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *)
(TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *)

C DE +! (ADD

(DUPLICATE SECOND ITEM AS NEW BOTTOM *)
(DROP BOTTOM STACK ITEM *)

(EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *)
(DUPLICATE BOTTOM ITEM ON STACK *)

SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM *)
C lDE TOGGLE
CODE @

(BYTE AT ~DDRESS-2, BIT PATTERN-I *)

BOT X) LDA, PHA,
CODE C@ (REPLACE
CODE (STORE

FORTH INTEREST GROUP

(REPLACE STACK ADDRESS WITH 16 BIT *)
(CONTENTS OF THAT ADDRESS *)

STACK ADDRESS WITH POINTED 8 BIT BYTE *)
SECOND AT 16 BITS ADDRESSED BY BOTTOM *)

MAY 1, 1979

1] 3
4 1 3
6 13
8 13
1 14
4 14
9 14
10 14
1 15
6 15
1 16
8 16
2 17
9 17
1 18
2 18
3 18
1 19
1 20
2 20
5 21
7 21
9 21
11 21
1 22
1 23
2 23
1 24
2 24
2 25
6 25
10 25
1 26
5 26
8 26
12 26
1 27
2 27
5 27
8 27
11 2 7
2 28
6 28
1 29
4 29
9 29
12 2'?
1 30
4 30
7 30
i1 30
2 31
7 31
1 3 2
2 32
5 32
8 32

..:;/

\

CODE C!

CONSTANT
VARIABLE
USER

20 CONSTANT BL
40 CONSTANT C/L
JBEO CONSTANT
4000 CONSTANT

80 CONSTANT
8 CONSTANT

+ORIGIN LITERAL
HEX (
(06 USER SO)
(08 USER RO)
OA USER TIB
OC USER WIDTH
OE USER WARNING
10 USER FENCE
12 USER DP

(STORE SECOND AT BYTE ADDRESSED BY BOTTOM
(CREATE NEW COLON-DEFINITION UNTIL ';'

(TERMINATE COLON-DEFINITION
(WORD WHICH LATER CREATES CONSTANTS
(WORD WHICH LATER CREATES VARIABLES

(CREATE USER VARIABLE
CR (ASCII BLANK

(TEXT CHARACTERS PER LINE
FIRST (FIRST BYTE RESERVED FOR BUFFERS
LIMIT (JUST BEYOND TOP OF RAM
B/BUF (BYTES PER DISC BUFFER
B/SCR (BLOCKS PER SCREEN = 1024 B/BUF /
+ (LEAVES ADDRESS RELATIVE TO ORIGIN

0 THRU 5 RESERVED, REFE~ENCED TO $00AO
(TOP DF EMPTY COMPUTATION STACK

(TOP OF EMPTY RETURN STACK
(TERMINAL INPUT BUFFER

(MAXIMUM NAME FIELD WIDTH

CR

14 USER VOC-LINK

(CONTROL WARNING MODES
(BARRIER FOR FORGETTING

(DICTIONARY POINTER
(TO NEWEST VOCABULARY
(INTERPRETATION BLOCK

(OFFSET INTO SOURCE TEXT
16 USER BLK
18 USER IN
lA USER OUT
1C USER SCR
1E USER OFFSET
20 USER CONTEXT
22 USER CURRENT
24 USER STATE
26 USER BASE
28 USER DPL
2A USER FLO
2C USER CSP
2E USER R//
30 USER HLD

1+ 1 +
2+ 2 +
HERE DP @
ALLOT DP +!

(DISPLAY CURSOR POSITION
(EDITING SCREEN

(POSSIBLY TO OTHER DRIVES
(VOCABULARY FIRST SEARCHED

(SEARCHED SECOND, COMPILED INTO

CR
(COMPILATION STATE

(FOR NUMERIC INPUT-OUTPUT
(DECIMAL POINT LOCATION

(OUTPUT FIELD WIDTH
(CHECK STACK POSITION

(EDITING CURSOR POSITION
(POINTS TO LAST CHARACTER HELD IN PAD

(INCREMENT STACK NUMBER BY ONE
(INCREMENT STACK NUMBER BY TWO

(FETCH NEXT FREE ADDRESS IN DICT.
(MOVE DICT. POINTER AHEAD

'
HERE. 2 ALLOT CR (ENTER STACK NUMBER TO DICT.

(ENTER STACK BYTE TO D!CT.
(LEAVE DIFF. SEC - BOTTOM
(LEAVE BOOLEAN OF EQUALITY

C,

=
: <

>

HERE
MINUS

0=
0<

SWAP
ROT
SPACE
-DUP

>R

TRAVERSE

C! 1 ALLOT
+

<
SWAP R>
BL EM! T

SWAP

DUP IF DUP
CR

END IF

(LEAVE BOOLEAN OF SEC < BOT
(LEAVE BOOLEAN OF SEC) BOT

(ROTATE THIRD TO BOTTOM

(ADDRESS-2, DIRECTION-I,

(PRINT BLANK ON TERMINAL
(DUPLICATE NON-ZERO

(MOVE ACROSS NAME FIELD
I.E~ -1=R TO L, +l=L TO R

LATEST
LFA
CFA
NFA
PFA
!CSP

CURRENT @ @
4
2 CR
5 -1 TRAVERSE

1 TRAVERSE 5 +
SP@ CSP

(NFA OF LATEST WORD
(CONVERT A WORDS PFA TO LFA
(CONVERT A WORDS PFA TO CFA
(CONVERT A WORDS PFA TO NFA
(CONVERT A WORDS NFA TO PFA

(SAVE STACK POSITIDN IN 'CSP'

*)
*)
*)
*)
*)
*)
*)
*)_
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)_
*)
*)
*)
*)
*)
*)
*)
*)
*)_
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

FORTH INTEREST GROUP HAY 1 ~ 1979

12 32
2 33
9 33
1 34
5 34
10 34
4 35
5 35
7 35
8 35
9 35
10 35
13 35
1 36
2 36
3 36
4 36
5 36
6 36
7 36
8 36
9 36
10 36
11 36
12 36
13 36
1 37
2 37
3 37
4 37
5 37
6 37
7 37
8 37
9 37
10 37
1 38
2 38
3 38
4 38
5 38
6 38
7 38
8 38
9 38
10 38

. 11 38
12 38
13 38
1 39
2 39
6 39
11 39
12 39
13 39
14 39
1 40

?ERROR
?COt-1P
?EXEC
?PAIRS

(BOOLEAN-2, ERROR TYPE-1, WARN FOR TRUE *)
STATE @ 0= 11 ?ERROR (ERROR IF NOT COMPILING *)
STATE @ 12 ?ERROR (ERROR IF NOT EXECUTING *)

13 ?ERROR (VERIFY STACK VALUES ARE PAIRED *)
?CSP SP@ CSP @ - 14 ?ERROR ; (VERIFY STACK POSITION *)
?LOADING
COHPILE

(VERIFY LOADING FROM DISC *)
(COMPILE THE EXECUTION ADDRESS FOLLOWING *)

(0
J co

STATE
STATE

IMMEDIATE (STOP COMPILATION *)
(ENTER COMPILATION STATE *)

(ALTER LATEST WORD NAME *)
(MAKE HEX THE IN-OUT BASE *)

(MAKE DECIMAL THE. IN-OUT BASE *)
FIELD POINTING TO CALLING ADDRESS *)

(TERMINATE A NEW DEFINING WORD *)

SMUDGE
HEX
DECIMAL
(;CODE)
;CODE
<BUILDS
DOES>

COUNT
TYPE
-TRAILING
(. ")

LATEST 20 TOGGLE
10 BASE
OA BASE

(WRITE CODE

0 CONSTANT (CREATE HEADER FOR 'DOES>' WORD *)
(REWRITE PFA WITH CALLING HI-LEVEL ADDRESS *)

(REWRITE CFA WITH 'DOES>' CODE *)
DUP 1+ SWAP C@ (LEAVE TEXT ADDR. CHAR. COUNT *)

(TYPE STRING FROM ADDRESS-2, CHAR.COUNT-1 *)
(ADJUST CHAR. COUNT TO DROP TRAILING BLANKS *)

(TYPE IN-LINE STRING, ADJUSTING RETURN *) . " . . 22 STATE @ (COMPILE OR PRINT QUOTED STRING *)
EXPECT
X BLK @
FILL
ERASE
BLANKS
HOLD
PAD

(TERMINAL INPUT MEMORY-2, CHAR LIMIT-1 *)
(END-OF-TEXT IS NULL *)

(FILL MEMORY BEGIN-3, QUAN-2, BYTE-1 *)
(FILL MEMORY WITH ZEROS BEGIN-2, QUAN-1 *)

(FILL WITH BLANKS BEGIN-2, QUAN-1 *)
(HOLD CHARACTER IN PAD *)

HERE 44 + (PAD IS 68 BYTES ABOVE HERE *)
(DOWNWARD HAS NUMERIC OUTPUTS; UPWARD MAY HOLD TEXT *)

WORD
(NUMBER)
NUHBER
-FIND
(ABORT)
ERROR

(ENTER WITH DELIMITER, MOVE STRING TO 'HERE' *)
(CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR. *)

(ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER *)
(RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE *)

GAP (ABORT) (USER ALTERABLE ERROR ABORT *)
(WARNING: -1=ABORT, O=NO DISC, !=DISC *)

WARNING @ 0< (PRINT TEXT LINE REL TO SCR #4 *)
ID.
CREATE

(PRINT NAME FIELD FROM ITS HEADER ADDRESS *)
(A SMUDGED CODE HEADER TO PARAM FIELD *)

(WARNING IF DUPLICATING A CURRENT NAME *)
[COMPILE] (FORCE COMPILATidN OF AN IMMEDIATE WORD *)
LITERAL (IF COMPILING, CREATE LITERAL *)
DLITERAL (IF COMPILING, CREATE DOUBLE LITERAL *)
?STACK (QUESTION UPON OVER OR UNDERFLOW OF STACK *)
INTERPRET · (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS *)
IMMEDIATE (TOGGLE PREC~ BIT OF LATEST CURRENT WORD *)
VOCABULARY (CREATE VOCAB WITH 'V-HEAD' AT VOC INTERSECT. *)

VOCABULARY FORTH IMMEDIATE (THE TRUNK VOCABULARY *)
DEFINITIONS (SET THE CONTEXT ALSO AS CURRENT VOCAB *)

: ((SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS *)
: QUIT (RESTART, INTERPRET· FROM TERHINAL *)
: ABORT (WARM RESTART, INCLUDING REGISTERS *)
CODE COLD (COLD START, INITIALIZING USER AREA *)
CODE S->D (EXTEND SINGLE INTEGER TO DOUBLE *)

+- 0< IF MINUS ENDIF ; (APPLY SIGN TO NUMBER BENEATH *)
: D+- (APPLY SIGN TO DOUBLE NUMBER BENEATH *)
: ABS DUP +- (LEAVE ABSOLUTE VALUE *)

FORTH INTEREST GROUP HAY 1, I 9 7 9

3 40
6 40
8 40
10 40
12 40
14 40
2 41
5 41
7 41
9 41
11 41
13 41
2 42
6 42
2 43
4 43
5 43
1 44
2 L1 4
5 44
8 44
12 44
2 45
11 45
1 46
4 46
7 46
10 46
13 46
14 46
1 47
I 4A
6 l! 8
12 48
2 49
4 49
5 49
9 49
2 50
3 50
2 51
5 51
8 51
13 51
2 52
1 53
4 53
9 53
1 1 53
14 53
2 54
7 54
1 55
1 56
4 56
6 56
9 56

DABS
MIN
MAX
M*
M/

: *
/MOD
I
MOD
*/MOD

(DOUBLE INTEGER ABSOLUTE VALUE *) 10 56
(LEAVE SMALLER OF TWO NUMBERS *) 12 56

(LEAVE tARGET OF TWO NUMBERS *) 14 56
(LEAVE SIGNED DOUBLE PRODUCT OF TWO SINGLE NUMBERS *) 1 57

(FROM SIGNED DOUBLE-3-2, SIGNED DIVISOR-I *)_ 3 57

DUP D+-

(LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-I *) 4 57
U* DROP ; (SIGNED PRODUCT *) 7 57
>R S->D R> M/ (L!AVE REM-2, QUOT-I *) 8 57
}MOD SWAP DROP (LEAVE QUOTIENT *)_ 9 57
/MOD DROP CR (LEAVE REMAINDER *) IO 57

{ TAKE RATION OF THREE NUMBERS, LEAVING *) I1 57
>R M* R> M/ (REM-2, QUOTIENT-! *) 12 57

*/ */MOD SWAP DROP (LEAVE RATIO OF THREE NUMBS *) 13 57
M/MOD (DOUBLE, SINGLE DIVISOR ••• REMAINDER, DOUBLE *) I4 57

FIRST VARIABLE USE (NEXT BUFFER TO USE, STALEST *) I 58
FIRST VARIABLE PREV (MOST RECENTLY REFERENCED BUFFER *)_ 2 58

+BUF (ADVANCE ADDRESS-I TO NEXT BUFFER. RETURNS FALSE *) 4 58
84 (I.E. B/BUF+4) + DUP LIMIT = (IF AT PREV *)- 5 58

UPDATE . (MARK THE BUFFER POINTED TO BY PREV AS ALTERED *)_ 8 58
EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON'T WRITE TO DISC *) 11 58
DRO 0 OFFSET (SELECT DRIVE #0 *) 14 58
DR1 07DO OFFSET --> (SELECT DRIVE #1 *) 15 58
BUFFER (CONVERT BLOCK# TO STORAGE ADDRESS *) 1 59
BLOCK (CONVERT BLOCK NUMBER TO ITS BUFFER ADDRESS *) 1 60
(LINE) (LINE#, SCR#, ••• BUFFER ADDRESS, 64 COUNT*) 2 6I
.LINE (LINE#, SCR#, ••• PRINTED*) 6 61

: MESSAGE (PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0 *) 9 61
LOAD (INTERPRET SCREENS FROM DISC *) 2 62
--> (CONTINUE INTERPRETATION ON NEXT SCREEN *) 6 62

6900 CONSTANT DATA (CONTROLLER PORT *) 1 65
6901 CONSTANT STATUS (CONTROLLER PORT *) 2 65
: #HL (CONVERT DECIMAL DIGIT FOR DISC CONTROLLER *)~ 5 65
CODED/CHAR (TEST CHAR-1. EXIT TEST BOOL-2, NEW CHAR-1 *) 1 66
: ?DISC (UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL *) 7 66

1 D/CHAR >R 0= (EOT, EXCEPT FOR SOH *) 8 66
CODE BLOCK-WRITE (SEND TO DISC FROM ADDRESS-2, COUNT-1 *)- 1 67

2 # LDA, SETUP JSR, (WITH EOT.AT END *) 2 67
CODE BLOCK-READ (BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL *) 2 68

R/W

,

FORGET
\
BACK
D.R
D.
.R

. .
?
LIST
INDEX
TRIAD·
VLIST

(C = I TO READ, 0 TO WRITE *) 3 69
(READ/WRITE DISC BLOCK *) 4 69

(BUFFER ADDRESS-3, BLOCK #-2, l=READ O=WRITE *) 5 69
(FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *) 2 72

(FOLLOWING WORD FROM .CURRENT VOCABULARY *) 6 72
(SKIP INTERPRETATION OF THE REMAINDER. OF LINE *) 11 72

HERE , (RESOLVE BACKWARD BRANCH *) 1 73
(DOUBLE INTEGER OUTPUT, RIGHT ALIGNED IN FIELD *) 1 76

0 D.R SPACE (DOUBLE INTEGER OUTPUT *) 5 76
>R S->D R> D.R (ALIGNED SINGLE INTEGER *) 7 76
S->D D. (SINGLE INTEGER OUTPUT *) 9 76
@ (PRINT CONTENTS OF MEMORY *) 11 76

(LIST SCREEN BY NUMBER ON STACK *) 2 77
(PRINT FIRST LINE OF EACH SCR&EN FROM-2, T0-1 *) 7 77

(PRINT 3 SCREENS ON PAGE, CONTAINING # ON STACK *) 12 77

CREATE MON
(LIST CONTEXT VOCABULARY *) 2 78

(CALL MONITOR, SAVING RE-ENTRY TO FORTH *) 3 79 OK

FORTH MODEL IMPLEMENTATION

This model is presented for the serious student as
both an example of a large FORTH program and as a complete
nucleus of FORTH. That is, it is sufficient to run and
to continue to compile itself.

When compiled, the model requires about 2800 bytes of
memory. An expanded version with formatted output and
compiling aids would require about 4000 bytes. A 'full'
implementation usually requires 6000 to 7000 bytes
(including editor, assembler, and disk interface).

The following information consists
you will find in the CODE definitions.
on the micro-computer used, these being
5602.

of word definitions
These are dependent
for the MOS Technology

Note that the notation in the CODE definitions is
'reverse Polish' as is all of FORTH. This means that the
operand comes before the operator. Each equivalent of a
'line' of assembly code has a symbolic operand, then
any address mode modifier, and finally the op-code mnemonic.
(Note that words that generate actual machine code end in
a',' i.e. LDA,). Therefor:

BOT 1+ LDA,

LDA 1, X

in FORTH would be:

in usual assembler.

And also:

POINTER)Y STA,

STA (POINTER),Y

in FORTH would be:

in usual assembler.

It takes a bit of getting used to, but reverse Polish
assembler allows full use of FORTH in evaluation of
expressions and the easy generation of the equivalent of macros.

IP

w

N

XSAVE

UP

GLOSSARY OF FORTH MODEL

address of the Interpretive Pointer in zero-page.

address of the code field pointer in zero-page.

address of an 8 byte scratch area in zero-page.

address of a temporary register for X in zero-page.

address of the User Pointer in zero-page.

GLOSSARY OF FORTH MODEL, cont •

• A specify accumulator address mode.

specify immediate mode for machine byte literals.
,X ,Y specify memory indexed address mode.

X))Y specify indirect memory reference by a zero-page register.
BOT address of high byte of a 16-bit stack item with ,X address mode. X register locates computation stack in zero-page, relative to address $0000.
BOT 1+ address of the low byte of the bottom stack item with ,X mode preset. '
SEC and SEC 1 + address the second stack item as for BOT.

TSX,

R

R n +

PUT

PUSH

move the return stack pointer (which is located in the CPU machine stack in page-one) to X register.
address of low byte of return stack with ,X mode preset.
address of the n-th

mode preset,
memory, so 1+
the high byte

byte of the return stack with ,X
Note that the low byte is at low
gets the high byte, and 3 + gets
of the second item of return stack.

address of r6utine to replace the present computation stack high byte from accumulator, and put from the machine stack one byte which replaces the present low stack byte; continue on to NEXT.

address of routine to repeat PUT but creating a new bottom item on the computation stack.

PUSHOA PUTOA address of routine to place the accumulator

POP POPTWO

at the low stack byte, with the high byte zero. PUTOA over-writes, while PUSHOA creates new item.
address of routine to remove one or two 16-bit items from computation stack.

BINARY address of routine to pop one item and PUT the accumulator (high) and ML stack (low) over what was second.
SETUP address of a routine to move 16-bit items to zero-page. Item quantity is in accumulator.

NEXT address of the inner-interpreter, to which all code routines must return. NEXT fetches indirectly referred to IP the next compiled FORTH word address. It then jumps indirectly to pointed machine code.

II 6
(INPUT-OUTPUT, TIM
CODE EMIT XSAVE STX, BOT 1+ LDA, 7F II AND,

72C6 JSR, XSAVE LDX, POP JMP,
CODE KEY XSAVE STX, BEGIN, BEGIN, 8 # LDX,

WFR-780519)

SCR
0
1
2
3
4
5
6
7
8
9

BEGIN, 6E02 LDA, .A LSR, CS END, 7320 JSR,
BEGIN, 731D JSR, 0 X) CMP, 0 X) CMP, 0 X) CMP,
0 X) CMP, 0 X) CMP, 6E02 LDA, .A LSR, PHP, TYA,
.A LSR, PLP, CS IF, 80 II ORA, THEN, TAY, DEX,
0= END, 731D JSR, FF /1 EOR, 7F /1 AND, 0= NOT END,
7F # CMP, 0= NOT END, XSAVE LDX, PUSHOA JMP,

10
1 1

CODE CR XSAVE STX, 728A JSR, XSAVE LDX, NEXT JMP,

12 CODE ?TERMINAL 1 II LDA, 6E02 BIT, 0= NOT IF,
13 BEGIN, 731D JSR, 6E02 BIT, 0= END, INY, THEN,
14 TYA, PUSHOA JMP,
15 DECIMAL ;S

SCR II 7
0 (INPUT-OUTPUT, APPLE WFR-780730)
1 CODE HOME FC58 JSR, NEXT JMP,
2 CODE SCROLL FC70 JSR, NEXT JMP,
3
4 HERE ' KEY 2 (POINT KEY TO HERE)
5 FDOC JSR, 7F II AND, PUSHOA JMP,
6 HERE ' EMIT 2 (POINT EMIT TO HERE)
7 BOT 1+ LDA, 80 II ORA, FDED JSR, POP JMP,
8 HERE ' CR 2 (POINT CR TO HERE)
9 FD8E JSR, NEXT JMP,

10 HERE ' ?TERMINAL 2 (POINT ?TERM TO HERE)
11 COOO BIT, 0<
12 IF, BEGIN, COlO BIT, COOO BIT, 0< NOT END, INY,
13 THEN, TYA, PUSHOA JMP,
1 4
15 DECIMAL ;S

SCR II 8
0 (INPUT-OUTPUT, SYM-1
1 HEX
2 CODE KEY 8A58 JSR, 7F II AND, PUSHOA JMP,
3
4 CODE EMIT BOT 1+ LDA, '8A47 JSR, POP JMP,
5
6 CODE CR 834D JSR, NEXT JMP,
7
8 CODE ?TERMINAL (BREAK TEST FOR ANY KEY)
9 8B3C JSR, CS

WFR-781015)

10 IF, BEGIN, 8B3C JSR, CS NOT END, INY, THEN,
11 TYA, PUSHOA JMP,
1 2
1 3
1 4
15 DECIMAL ;S

FORTH INTEREST GROUP MAY 1, 1979

~7

SCR II 12
0 (COLD AND WARM ENTRY, USER PARAMETERS WFR-79APR29)
1 ASSEMBLER OBJECT MEM HEX
2 NOP, HERE JMP, (WORD ALIGNED VECTOR TO COLD)
3 NOP, HERE JMP, (WORD ALIGNED VECTOR TO WARM)
4 0000 , 0001 , (CPU, AND REVISION PARAMETERS)
5 0000 (TOPMOST WORD IN FORTH VOCABULARY)
6 7F (BACKSPACE CHARACTER)
7 3BAO (INITIAL USER AREA)
8 009E (INITIAL TOP OF STACK)
9 01FF (INITIAL TOP OF RETURN STACK)

10 0100 (TERMINAL INPUT BUFFER)
11 001F (INITIAL NAME FIELD WIDTH)
12 0001 (INITIAL WARNING = 1)
13 0200 (INITIAL FENCE)
14 0000 (COLD START VALUE FOR DP)
15 0000 (COLD START VALUE FOR VOC-LINK) -->

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
14
15

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
15

II 13
(START OF NUCLEUS,
CODE LIT

LIT, PUSH, PUT, NEXT WFR-78DEC26)
(PUSH FOLLOWING LITERAL TO STACK *)

IP INC, 0= IF, IP 1+ INC, THEN, IP)Y LDA, PHA,
IP)Y LDA,

LABEL PUSH
IP INC, 0= IF, IP 1+ INC, THEN,

(PUSH ACCUM AS HI-BYTE, ML STACK AS LO-BYTE *)
DEX, DEX,

LABEL PUT (REPLACE BOTTOM WITH ACCUM. AND ML STACK *)
BOT 1+ STA, PLA, BOT STA,

LABEL NEXT (EXECUTE NEXT FORTH ADDRESS, MOVING IP *)

-->

1 II LDY, IP)Y LDA, W 1+ STA, (FETCH CODE ADDRESS)
DEY, IP)Y LDA, W STA,

CLC, IP LDA, 2 II ADC, IP STA,
CS IF, IP 1+ INC, THEN,

(MOVE IP AHEAD)

W 1 - JMP, (JUMP !NDIR. VIA W THRU CODE FIELD TO CODE)

II 14
(SETUP WFR-790225)

(MAKE SILENT WORD *)
0== NOT END, IP)Y LDA,

HERE 2+
PHA, TYA, ' 'T LIT OB +

LABEL SETUP (MOVE II ITEMS FROM STACK TO 'N' AREA OF Z-PAGE *)
.A ASL, N 1 - STA,
BEGIN, BOT LDA, N ,Y STA, INX, INY,

N 1- CPY, 0= END, 0 H LDY, RTS,

CODE EXECUTE (EXECUTE A WORD BY ITS CODE FIELD *)
(ADDRESS ON THE STACK *)

BOT LDA, W STA, BOT 1+ LDA, W 1+ STA,
INX, INX, W 1 - JMP,

-->

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR II 15
0 (BRANCH, OBRANCH
1 CODE BRANCH
2 CLC, IP)Y LDA,
3 INY, IP)Y LDA,
4
5
6
7
8
9

1 0

CODE OBRANCH
INX, INX, FE ,X ,

BRANCH 0• NOT
LABEL BUMP:

CLC, IP LDA, 2 II
1 1
1 2

cs IF, IP 1+ INC,

13 -->
14
15

SCR II 16

W/16-BIT
(ADJUST

IP ADC,
IP 1+ ADC,

PLA,

(IF BOT

OFFSET WFR-79APR01)
IP BY IN-LINE 16 BIT LITERAL.*)

PHA,
IP 1+ STA,
IP STA, NEXT 2+ JMP,

IS ZERO, BRANCH FROM LITERAL *)
LDA, FF ,X ORA,
END, (USE 'BRANCH' FOR FALSE)

(TRUE JUST MOVES IP 2 BYTES *)
ADC, IP STA,
THEN, NEXT JMP,

0 (LOOP CONTROL WFR-79MAR20)
1 CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL •> LIMIT *)
2 XSAVE STX, TSX, R INC, 0• IF, R 1+ INC, THEN,
3 LABEL Ll: CLC, R 2+ LOA, R SBC, R 3 + LDA, R 1+ SBC,
4 LABEL L2: XSAVE LDX, (LIMIT-INDEX-1)
5 • A ASL, ' BRANCH CS END, (BRANCH UNTIL D 7 SIGN•1)
6 PLA, PLA, PLA, PLA, BUMP: JMP, (ELSE EXIT LOOP)
7
8
9

10
1 1
12
1 3
14
15

SCR II 17
0 ((DO­
l
2 CODE (DO)
3 SEC 1+ LDA, PHA,
4 BOT 1+ LDA, PHA,
5
6 LABEL POPTWO INX,
7 LABEL POP INX,
8
9 CODE I

10
11
12 -->
1 3
14
15

FORTH INTEREST GROUP

WFR-79MAR30)

(MOVE TWO STACK ITEMS TO RETURN STACK *)
SEC LDA, PHA,
BOT LDA, PHA,

INX,
INX, NEXT JMP,

(COPY CURRENT LOOP INDEX TO STACK *)
(THIS WILL LATER BE POINTED TO 'R')

MAY 1, 19 7 9

II I 8 SCR
0
1
2
3
4
5
6
7
8
9

(DIGIT
'CODE DIGIT

WFR-781202)
(CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM *)

(IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM; *)
(OTHERWISE FALSE-BOTTOM. *)

SBC, SEC, SEC LDA, 30 #
0< NOT IF, OA # CMP,

0< NOT IF,
(ADJUST FOR ASCII L~TTER)
SEC, 07 II SBC, OA II CMP,

0< NOT IF,
SWAP (AT COMPILE TIME) THEN, BOT CMP, (TO BASE)

0< IF, SEC STA, 1 II LDA,
PHA, TYA, PUT JMP, 10

1 1
1 2
1 3
1 4

(STORE RESULT SECOND AND RETURN TRUE)
THEN, THEN, THEN, (CONVERSION FAILED)
TYA, PHA, INX, INX, PUT JMP, (LEAVE BOOLEAN FALSE)

15 -->

SCR II 19
0 (FIND FOR VARIABLE LENGTH NAMES WFR-790225)
1 CODE (FIND) (HERE, NFA ••• PFA, LEN BYTE, TRUE; ELSE FALSE*)
2 2 # LDA, SETUP JSR, XSAVE STX,
3 BEGIN, 0 II LDY, N)Y LDA, N 2+)Y EOR, 3F II AND, 0•
4 IF, (GOOD) BEGIN, INY, N)Y LDA, N 2+)Y EOR, .A ASL, 0==
5 IF, (STILL GOOD) SWAP CS (LOOP TILL D7 SET)
6 END, XSAVE LDX, DEX, DEX, DEX, DEX, CLC,
7 TYA, 5 II ADC, N ADC, SEC STA, 0 II LDY,
8 TYA, N 1+ ADC, SEC 1+ STA, BOT 1+ STY,
9 N)Y LDA, BOT STA, 1 II LDA, PHA, PUSH JMP, (FALSE)

10 THEN, CS NOT (AT LAST CHAR?) IF, SWAP THEN,
11 BEGIN, INY, N)Y LDA, 0< END, (TO LAST CHAR)
12 THEN, INY, (TO LINK) N)Y LDA, TAX, !NY,
13 N)Y LDA, N 1+ STA, N STX, NORA, (0 LINK ?) ·
14 0= END, (LOOP FOR ANOTHER NAME)
15 XSAVE LDX, 0 II LDA, PHA, PUSH JMP, (FALSE) -->

SCR II 20
0 (ENCLOSE WFR-780926)
1 CODE ENCLOSE (ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH *)
2 (ADDR-4, AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-I *)
3 2 II LDA, SETUP JSR, TXA, SEC, 8 II SBC, TAX,
4 SEC 1+ STY, BOT 1+ STY, (CLEAR HI BYTES) DEY,
5 BEGIN, INY, N 2+)Y LDA, (FETCH CHAR)
6 N CMP, 0== NOT END, . (STEP OVER LEADING DELIMITERS)
7 BOT 4 + STY, (SAVE OFFSET TO FIRST CHAR)
8 BEGIN, N 2+)Y LDA, 0=
9 IF, (NULL) SEC STY, (IN EW) BOT STY, (IN NC)

1 0 TYA, BOT 4 + CMP, 0=
11 IF, (Y=FC) SEC INC, (BUMP EW) THEN, NEXT JHP,
12 THEN, SEC STY, (IN EW) INY, N CMP, (DELIM ?)
13 0= END, (IS DELIM)· BOT STY, (IN NC) NEXT JMP,
14
15 -->

FORTH INTEREST GROUP MAY 1, 19 7 9

.Jo

SCR
0
1

II 21
(TERMINAL VECTORS WFR-79MAR30)
(

2 (
3 (
4

THESE WORDS ARE CREATED WITH NO EXECUTION CODE, YET.
THEIR CODE FIELDS WILL BE FILLED WITH THE ADDRESS OF THEIR
INSTALLATION SPECIFIC CODE.

)
)
)

5 CODE EMIT (PRINT ASCII VALUE ON BOTTOM OF STACK *) 6
7 CODE KEY (ACCEPT ONE TERMINAL CHARACTER TO THE STACK *)
8
9 CODE ?TERMINAL ('BREAK' LEAVES 1 ON STACK; OTHERWISE 0 *) 1 0

11 CODE CR (EXECUTE CAR. RETURN, LINE FEED ON TERMINAL *)
1 2
13 -->
1 4
15

SCR II 22
0 (CMOVE, WFR-79MAR20)
1 CODE CMOVE (WITHIN MEMORY; ENTER W/ FROM-3, T0-2, QUAN-1 *)
2 3 II LDA, SETUP JSR, (MOVE 3 ITEMS TO 'N' AREA)
3 BEGIN, BEGIN, N CPY, 0= (DECREMENT BYTE COUNTER AT 'N' 4 IF, N 1+ DEC, 0< (EXIT WHEN DONE)
5 IF, NEXT JMP, THEN, THEN,
6 N 4 +)Y LDA, N 2+)Y STA, INY, 0=
7 END, (LOOP TILL Y WRAPS, 22 CYCLES/BYTE)
8 N 5 + INC, N 3 + INC, (BUMP HI BYTES OF POINTERS)
9 JMP, (BACK TO FIRST 'BEGIN')

1 0
11 -->
1 2
13
14
15

SCR
0
1
2

II 2 3

3
4
5
6
7
8
9

10
1 1
1 2
1 3
1 4

(U*,
CODE U*

UNSIGNED MULTIPLY FOR 16 BITS
(16 BIT MULTIPLICAND-2,

(32 BIT UNSIGNED PRODUCT:

WFR-79APR08)
16 BIT MULTIPLIER-I *)

LO WORD-2, HI WORD-I *)
SEC LDA,
SEC 1+ LDA,
10 II LDY,

N STA, SEC STY,
N 1+ STA, SEC 1+ STY, (MULTIPLICAND TO N)

BEGIN, BOT 2+ ASL, BOT 3 + ROL, BOT ROL, BOT 1+ ROL,
(DOUBLE PRODUCT WHILE SAMPLING Dl5 OF MULT)

CS IF, (SET) CLC,

END,

(ADD MULTIPLICAND TO PARTIAL PRODUCT LOW 24 BITS
N LDA, BOT 2 + ADC, BOT 2 + STA,
N 1+ LDA, BOT 3 + ADC, BOT 3 + STA,
0 II LDA, BOT ADC, BOT STA,

THEN, DEY, 0=
NEXT JMP,

15 -->

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR II 24
0 (U/, UNSIGNED DIVIDE FOR 31 BITS WFR-79APR29)
I CODE U/ (3I BIT DIVIDEND-2, -3, I6 BIT DIVISOR-I *)
2 (16 BIT REMAINDER-2, 16 BIT QUOTIENT-I *)
3 SEC 2 +LOA, SEC LOY, SEC 2 +STY, .A ASL, SEC STA,
4 SEC 3 +LOA, SEC 1+ LOY, SEC 3 +STY, .A ROL, SEC 1+ STA,
5 10 II LDA, N STA,
6 BEGIN, SEC 2 + ROL, SEC 3 + ROL, SEC,
1 SEC 2 + LOA, BOT SBC, TAY,
8 SEC 3 + LDA, BOT I+ SBC,
9 CS IF, SEC 2+ STY, SEC 3 + STA, THEN,

10 SEC ROL, SEC I+ ROL,
I1 N DEC, 0=
I2 END, POP JMP,
13 -->
I 4
IS

SCR II 25
0 (LOGICALS WFR-79APR20)
1
2 CODE AND (LOGICAL BITWISE AND OF BOTTOM TWO ITEMS *)
3 BOT LDA, SEC AND, PHA,
4 BOT 1+ LOA, SEC I+ AND, INX, INX, PUT JMP,
5
6 CODE OR (LOGICAL BITWISE 'OR' OF BOTTOM TWO ITEMS *)
7 BOT LDA, SEC ORA, PHA,
8 BOT 1+ LDA, SEC I + ORA, INX, INX, PUT JMP,
9

10 CODE XOR (LOGICAL 'EXCLUSIVE-OR' OF BOTTOM TWO ITEMS *)
1 I BOT LDA, SEC EOR, PHA,
I2 BOT 1+ LDA, SEC 1+ EOR, INX, INX, PUT JMP,
I 3
14 -->
15

II 2 6 SCR
0
1
2
3

(STACK INITIALIZATION
CODE SP@

WFR-79HAR30)
. (FETCH STACK POINTER TO STACK *)

TXA,
LABEL PUSHOA · PHA, 0 II LDA, PUSH JMP,

4
5 CODE SP!
6 06 II LDY,
7
8
9

10
I 1

CODE RP!
XSAVE STX,

UP)Y LDA,

08 II LDY,
XSAVE LDX,

(LOAD SP FROM 'SO' *)
TAX, NEXT JMP,

(LOAD RP FROM RO *)
UP)Y LDA, TAX, TXS,
NEXT JMP,

12 CODE ;S (RESTORE IP REGISTER FROM RETURN STACK *)
13 PLA, IP STA, PLA, IP I+ STA, NEXT JMP,
14
IS -->

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR II 27
0 (RETURN STACK WORDS WFR-79MAR29)
1 CODE LEAVE (FORCE EXIT OF DO-LOOP BY SETTING LIMIT *)
2 XSAVE STX, TSX, R LDA, R 2+ STA, (TO INDEX *)
3 R 1+ LDA, R 3 + STA, XSAVE LDX, NEXT JMP,
4
5 CODE >R (MOVE FROM COMP. STACK TO RETURN STACK *) 6 BOT 1+ LDA, PHA, BOT LDA, PHA, INX, INX, NEXT JMP,
7
8 CODE R>
9 DEX, DEX, PLA,

(MOVE FROM RETURN STACK TO COMP. STACK *)
BOT STA, PLA, BOT 1+ STA, NEXT JMP,

10
1 1
1 2

CODE R
XSAVE
XSAVE

R

(COPY THE BOTTOM OF RETURN STACK TO COMP. STACK *)
STX, TSX, R LDA, PHA, R 1+ LDA,

1 3 LDX, PUSH JMP,
1 4 , -2 BYTE.IN I
15 -->

II 28
(TESTS AND LOGICALS WFR-79MAR19)

SCR
0
1
2
3
4
5
6
7
8

CODE 0= (REVERSE LOGICAL STATE OF BOTTOM OF STACK *)
BOT LDA, BOT 1+ ORA, BOT 1+ STY,
0= IF, INY, THEN, BOT STY, NEXT JMP,

CODE 0<
BOT 1+ ASL,

(LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE *)
TYA, .A ROL, BOT 1+ STY, BOT STA, NEXT JMP,

9
10 -->
1 1
12
1 3
14
15

SCR
0
1

WFR-79MAR19)
(LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS *)

2 LDA, SEC ADC, SEC STA, BOT 1+ LDA, SEC 1+ ADC,
3 1+ STA, INX, INX, NEXT JMP,
4 (ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE *)
5 2 + L D A , B 0 T 6 + AD C , B 0 T 6 + S T A,
6 3 + LDA, BOT 7 + ADC, BOT 7 + STA,
7 LDA, BOT 4 + ADC, BOT 4 + STA,
8 1 + LDA, BOT 5 + ADC, BOT 5 + STA, POPTWO JMP,
9 CODE MINUS (TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *) 10 SEC, TYA, BOT SBC, BOT STA,

11 TYA, BOT 1+ SBC, BOT 1+ STA, NEXT JMP,
12 CODE DMINUS (TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *) 13 SEC, TYA, BOT 2 + SBC, BOT 2 + STA,
14 TYA, BOT 3 + SBC, BOT 3 + STA,
15 1 BYTE.IN MINUS JMP, -->

FORTH INTEREST GROUP MAY 1, 1 9 7 9

SCR
0
1
2
3
4
5
6

II 30
(STACK MANIPULATION
CODE OVER

WFR-79HAR29)
(DUPLICATE SECOND ITEM AS NEW BOTTOH *)

SEC LDA, PHA, SEC 1+ LDA, PUSH JMP,

CODE DROP (DROP BOTTOM STACK ITEM *)
POP -2 BYTE.IN DROP ! (C.F. VECTORS DIRECTLY TO 'POP')

7 CODE SWAP (EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *)
8 SEC LDA, PHA, BOT LDA, SEC STA,
9 SEC 1+ LDA, BOT 1+ LDY, SEC 1+ STY, PUT JMP,

1 0
1 1
1 2
1 3

CODE DUP
BOT LDA, PHA,

(DUPLICATE BOTTOM ITEM ON STACK *)
BOT 1+ LDA, PUSH JMP,

14 -->
15

SCR II 31
0 (MEMORY INCREMENT, WFR-79MAR30)
1
2 CODE +! (ADD
3 CLC, BOT X)
4 BOT INC, 0=
5 BOT X) LDA,
6

SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM *)
L D A , S E C AD C , B 0 T X) S T A ,
IF, BOT 1+ INC, THEN,
SEC 1+ ADC, BOT X) STA, POPTWO JMP,

7 CODE TOGGLE (BYTE AT ADDRESS-2, BIT PATTERN-I ••• *)
8 SEC X) LDA, BOT EOR, SEC X) STA, POPTWO JMP,
9

10 -->
1 1
12
13
14
15

II 3 2
(MEMORY FETCH AND STORE
CODE @ (

BOT X) LDA, PHA,

WFR-781202)
REPLACE STACK ADDRESS WITH 16 BIT *)

SCR
0
1
2
3
4

BOT INC, 0= IF, BOT 1+ INC,
(CONTENTS OF THAT ADDRESS *)
THEN, BOT X) LDA, PUT JMP,

5 CODE C@ (REPLACE STACK ADDRESS WITH POINTED 8 BIT BYTE *)
6
7.

8
9

10
1 1

BOT X) LDA, BOT STA, BOT 1+ STY, NEXT JMP,

CODE ! (STORE SECOND AT 16 BITS ADDRESSED BY BOTTOM *)
SEC LDA, BOT X) STA, BOT INC, 0= IF, BOT 1+ INC, THEN,
SEC 1+ LDA, BOT X) STA, POPTWO JMP,

12 CODE C! (STORE SECOND AT BYTE ADDRESSED BY BOTTOM *)
13 SEC LDA, BOT X) STA, · POPTWO JMP,
14
15 DECIMAL ;S

FORTH INTEREST GROUP MAY 1 , 19 7 9

SCR II 33
0 (• ' .

' ' WFR-79MAR30)
1
2 (CREATE NEW COLON-DEFINITION UNTIL ';' *)
3 ?EXEC !CSP CURRENT @ CONTEXT
4 CREATE J ; CODE IMMED lATE
5
6

IP 1+ LDA, PHA, IP LDA, PHA, CLC, W LDA, 2 II ADC,
IP STA, TYA, W 1+ ADC, IP 1+ STA, NEXT JMP,

7
8
9 (TERMINATE COLON-DEFINITION *)

1 0
11
12
13
14

?CSP COMPILE ;S
SMUDGE { ; IMMEDIATE

15 -->

SCR II 34
0 (CONSTANT, VARIABLE, USER WFR-79MAR30)
1 CONSTANT (WORD WHICH LATER tREATES CONSTANTS *)
2 CREATE SMUDGE ;CODE
3 Z, II LDY, W)Y LDA, PHA, INY, W)Y LDA, PUSH JMP,
4
5 VARIABLE (WORD WHICH LATER CREATES VARIABLES *)
6 CONSTANT ;CODE
7 CLC, W LDA, 2 II ADC, PHA, TYA, W 1+ ADC, PUSH JMP,
8
9

USER (CREATE USER VARIABLE *)
CONSTANT ;CODE

10
1 1
1 2
13

2 II LDY, CLC, W) Y LDA, UP ADC, PHA,
0 # LDA, UP 1+ ADC, PUSH JMP,

14
15 -->

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1

II 35
(DEFINED CONSTANTS
HEX
00 CONSTANT 0 01
02 CONSTANT 2 03
20 CONSTANT BL
40 CONSTANT C/L

3BEO
4000

80
8

CONSTANT
CONSTANT
CONSTANT

CONSTANT

FIRST
LIMIT
B/BUF
B/SCR

12 00 +ORIGIN
13 : +ORIGIN LITERAL +
14 -->
1 5

FORTH INTEREST GROUP

CONSTANT 1
CONSTANT 3

WFR-78MAR22)

{ ASCII BLANK *)
(TEXT CHARACTERS PER LINE *)

{ FIRST BYTE RESERVED FOR BUFFERS *)
(JUST BEYOND TOP OF RAM *)
(BYTES PER DISC BUFFER *)

{ BLOCKS PER SCREEN = 1024 B/BUF / *)

(LEAVES ADDRESS RELATIVE TO ORIGIN *)

MAY 1 , 19 7 9

II 36
(USER VARIABLES

SCR
0
I HEX (0 THRU 5

WFR-78APR29)
RESERVED, REFERENCED TO $00AO *)
(TOP OF EMPTY COMPUTATION STACK *)

(TOP OF EMPTY RETURN STACK *)
(TERMINAL INPUT BUFFER *)

(MAXIMUM NAME FIELD WIDTH *)
(CONTROL WARNING MODES *)

(BARRIER FOR FORGETTING *)
(DICTIONARY POINTER *)

(TO NEWEST VOCABULARY *)
(INTERPRETATICN BLOCK *)

(OFFSET INTO SOURCE TEXT *)

2
3
4
5
6
7
8
9

IO
I I
I2
I3
14
I5

(06
(08
OA
oc
OE
IO
1 2
I4
16
18
1A
lC
-->

SCR II 37

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

so)

RO)
TIB
WIDTH
WARNING
FENCE
DP
VOC-LINK
BLK
IN
OUT
SCR

(DISPLAY CURSOR POSITION *)
(EDITING SCREEN *)

0 (USER VARIABLES,
1 IE USER OFFSET
2 20 USER CONTEXT
3 22 USER CURRENT
4 24_ USER STATE

CONT. WFR-79APR29)

5 26 USER BASE
6 28 USER DPL
7 2A
8 2C
9 2E

10 30
11 -->
12
~3
14
15

SCR II 38

USER FLD
USER CSP
USER R#
USER HLD

0 (HI-LEVEL
I 1+ 1

MISC.
+

2 2+ 2 +
3 HERE DP @
4 ALLOT DP +!

(POSSIBLY TO OTHER DRIVES *)
(VOCABULARY FIRST SEARCHED *)

(SEARCHED SECOND, COMPILED INTO *)
(COMPILATION STATE *)

(FOR NUMERIC INPUT-OUTPUT *)
(DECIMAL POINT LOCATION *)

(OUTPUT FIELD WIDTH *)
(CHECK STACK POSITION *)

(EDITING CURSOR POSITION *)
(POINTS TO LAST CHARACTER HELD IN PAD *)

WFR-79APR29)
(INCREMENT STACK NUMBER BY ONE *)
(INCREMENT STACK NUMBER BY TWO *)

(FETCH NEXT FREE ADDRESS IN DICT. *)
(MOVE DICT. POINTER AHEAD *)

5 , HERE 2 ALLOT . (ENTER STACK NUMBER TO DICT. *)
(ENTER STACK BYTE TO DICT. *)
(LEAVE DIFF. SEC - BOTTOM *)
(LEAVE BOOLEAN OF EQUALITY *)

6 C, HERE
7 MINUS
8 : = 0=
9 : < 0<

10 > SWAP
11 ROT >R
I2: SPACE
I3 : -DUP
14 -->
15

C!
+

1 ALLOT

< ;
SWAP R>
BL EMIT

DUP IF

SWAP ;
;

DUP END IF

FORTH INTEREST GROUP

(LEAVE BOOLEAN OF SEC < BOT *)
(LEAVE BOOLEAN OF SEC > BOT *)

.
'

(ROTATE THIRD TO BOTTOM *)
(PRINT BLANK ON TERMINAL *)

(DUPLICATE NON-ZERO *)

MAY 1, 19 7 9

SCR
0
1
2
3
4
5
6
7
8

II 39
(VARIABLE LENGTH NAME SUPPORT

TRAVERSE
(ADDRESS-2, DIRECTION-I,

SWAP
BEGIN OVER + 7F OVER C@

LATEST CURRENT @ @

WFR-79MAR30)
(MOVE ACROSS NAME FIELD *)

I.E. -l•R TO L, +l=L TO R *)

< UNTIL SWAP DROP

(NFA OF LATEST WORD *)

9 (FOLLOWING HAVE LITERALS DEPENDENT ON COMPUTER WORD SIZE)
10
11
1 2
1 3
14
15

SCR
0
1
2

LFA 4
CFA 2
NFA 5
PFA 1

-->

II 40

.
t

-1 TRAVERSE
TRAVERSE · 5 +

(CONVERT A WORDS PFA TO LFA *)
(CONVERT A WORDS PFA TO CFA *)
(CONVERT A WORDS PFA TO NFA *}
(CONVERT A WORDS NFA TO PFA *}

(ERROR PROCEEDURES, PER SHIRA WFR-79MAR23)
!CSP SP@ CSP (SAVE STACK POSITION~IN 'CSP' *)

3 .•
4

?ERROR
· SWAP IF

(BOOLEAN-2,
ERROR

ERROR TYPE-I,
ELSE DROP

WARN FOR TRUE *)
END IF

5
6 ?COMP STATE @
7
8 ?EXEC STATE
9

0= 11 ? ERROR

@ 12 ?ERROR .
'

(ERROR IF NOT COMPILING *)

(ERROR IF NOT EXECUTING *)

10
1 1
12

?PAIRS 13 ?ERROR (VERIFY STACK VALUES ARE PAIRED *)

?CSP SP@ CSP @ - 14 ?ERROR (VERIFY STACK POSITION *)

(VERIFY LOADING FROM DISC *)

13
14
15

?LOADING
BLK @ 0= 16 ?ERROR •->

SCR II 41
0 (COMPILE, SMUDGE, HEX, DECIMAL
1

WFR-79APR20)

2 COMPILE (COMPILE THE EXECUTION ADDRESS FOLLOWING *)
3 ?COMP R> DUP 2+ >R @
4
5
6
7
8
9

10
1 1

. 1 2
1 3
14
15

[0 STATE

co STATE

SMUDGE LATEST

HEX 10 BASE

DECIMAL OA BASE
-->

FORTH INTEREST GROUP

IMMEDIATE (STOP COMPILATION *)

(ENTER COMPILATION STATE *)

20 TOGGLE (ALTER LATEST WORD NAME *)

(MAKE HEX THE IN-OUT BASE *)

(MAKE DECIMAL THE IN-OUT BASE *)

MAY 1, 1979

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
1 4
15

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
1 2
13
14
15

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
1 4
15

fl 4 2
(;CODE WFR-79APR20)

(;CODE) (WRITE CODE FIELD POINTING TO CALLING ADDRESS *)
R> LATEST pFA CFA , ,

;CODE (TERMINATE A NEW DEFINING WORD *)
?CSP COMPILE (;CODE)
[COM~ILE] SMUDGE IMMEDIATE

-->

tl 4 3
(<BUILD, DOES> WFR-79MAR20)

<BUILDS 0 CONSTANT (CREATE HEADER FOR 'DOES>' WORD *)

DOES> (REWRITE PFA WITH CALLING HI-LEVEL ADDRESS *)

-->

I! 44

(REWRITE CFA WITH 'DOES>' CODE *)
R> LATEST PFA ;CODE .

IP 1+ LDA, PHA, IP LDA, PHA, (BEGIN FORTH NESTING)
2 # LDY, W)Y LDA, IP STA, (FETCH FIRST PARAM)
INY, W) Y LDA, IP 1+ STA, (AS NEXT INTERP. PTR)
CLC, W LDA, 4 fl ADC, PHA, (PUSH ADDRESS OF PARAMS)
W 1+ LDA, 00 # ADC, PUSH JMP,

(TEXT OUTPUTS WFR-79APR02)
LEAVE TEXT ADDR. CHAR. COUNT *)
FROM ADDRESS-2, CHAR.COUNT-1 *)

COUNT DUP 1+ SWAP C@ (
(TYPE STRING

-DUP IF OVER + SWAP
TYPE

DO I C@ EMIT LOOP ELSE DROP ENDIF
-TRAILING (ADJUST CHAR. COUNT TO DROP TRAILING BLANKS *)

(• II)

II . .
IF

DUP 0 DO OVER OVER + 1 C@
BL IF LEAVE ELS$ 1 ENDIF LOOP

(TYPE IN-LINE STRING, ADJUSTING RETURN *)
R COUNT DUP 1+ R> + >R TYPE

22 STATE @
COMPILE (. 11)

ELSE WORD
IMMEDIATE

(COMPILE OR PRINT QUOTED STRING *)
WORD HERE C@ 1+ ALLOT

HERE COUNT TYPE ENDIF
-->

FORTH INTEREST GROUP MAY 1 , 19 7 9

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
1 4
1 5

t! 4 5
(TERMINAL INPUT

EXPECT (TERMINAL INPUT MEMORY-2,
OVER + OVER DO KEY DUP OE +ORIGIN (
IF DROP 08 OVER I = DUP R> 2 +

ELSE (NOT BS) DUP OD =
IF (RET) LEAVE DROP BL 0 ELSE
I C! 0 I 1+

ENDIF EMIT LOOP DROP
QUERY TIB @ 50 EXPECT 0 IN

8081 HERE

WFR-79APR29_)

CHAR LIMIT-I *)
BS) @ =

>R

DUP END IF

: X BLK @
IF (DISC) 1 BL K

IF (SCR END)
ELSE (TERMINAL

END IF

(END-OF-TEXT IS NULL *)
+! 0 IN ! BLK @ 7 AND 0=

?EXEC R> DROP ENDIF
) R> DROP
IMMEDIATE -->

SCR II 46
0 (· FILL, ERASE, BLANKS, HOLD, PAD WFR-79APR02)

QUAN-2, BYTE-I *) 1 FILL (FILL MEMORY BEGIN-3,
\ 2 SWAP >R OVER C! DUP 1+ R> 1 CMOVE ;

3
4
5
6
7
8
9

10
1 1
12
13
14

. .

ERASE
0

BLANKS
BL

HOLD
-1

PAD
(

(FILL MEMORY WITH ZEROS BEGIN-2, QUAN-1 *)
FILL ;

(FILL WITH BLANKS BEGIN-2, QUAN-1 *)
FILL

(HOLD CHARACTER IN PAD *)
HLD +! HLD @ C!

HERE 44 + . (PAD IS 68 BYTES ABOVE HERE *) ' DOWNWARD HAS NUMERIC OUTPUTS; UPWARD-MAY HOLD TEXT *) 15. -->

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
1 4
15

II 47
(WORD,

WORD
WFR-79APR02)

(ENTER WITH DELIMITER, MOVE STRING TO 'HERE' *)
BLK @ BLOCK ELSE TIB @ ENDIF BLK @ IF

IN @ +
ENCLOSE

SWAP (ADDRESS-2, DELIMITER-I)

-->

(ADDRESS-4, START-3, END-2, TOTAL COUNT-1)
HERE 22
IN +!

BLANKS (PREPARE FIELD OF 34 BLANKS)

OVER >R
R HERE C!
+ HERE 1+
R> CMOVE .

'

(STEP OVER THIS STRING)
(SAVE CHAR COUNT)
(LENGTH STORED FIRST)

(MOVE STRING FROM BUFFER TO HERE+!)

FORTH INTEREST GROUP - MAY 1, 19 7 9

SCR II 48
0 ((NUMBER-,
1 (NUMBER)
2 BEGIN 1+

NUMBER, -FIND, WFR-79APR29)
(CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR. *)
DUP >R C@ BASE @ DIGIT

3 WHILE SWAP BASE @ U* DROP ROT BASE @ U* D+
1+ IF 1 DPL +! ENDIF R> REPEAT R> 4 DPL @

5
6 NUMBER (ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER *)
7 0 0 ROT DUP 1+ C@ 2D DUP >R + -1
8 BEGIN DPL (NUMBER) DUP C@ BL
9 WHILE DUP C@ 2E 0 ?ERROR 0 REPEAT

10 DROP R> IF DMINUS ENDIF
1 1
12 -FIND (RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE *)
13 BL WORD HERE CONTEXT @ @ (FIND)
14 DUP 0= IF DROP HERE LATEST (FIND) ENDIF
15 -->

SCR
0
1
2
3
4
5
6

7
8
9

10
1 1

II 49
(ERROR HANDLER WFR-79APR20)

(ABORT) ABORT (USER ALTERABLE ERROR ABORT *)

ERROR (WARNING: -1=ABORT, O=NO DISC,
WARNING @ 0< (PRINT TEXT LINE REL TO
IF (ABORT) ENDIF HERE COUNT TYPE " ? "

MESSAGE SP! IN @ BLK @ QUIT

ID. (PRINT NAME FIELD FROM ITS HEADER ADDRESS *)
PAD 020 SF FILL DUP PFA LFA OVER

1=DISC *)
SCR //4 *)

PAD SWAP CMOVE PAD COUNT OlF AND TYPE SPACE
12 -->
13
14
15

II 50 SCR
0
1
2

3

(CREATE WFR-79APR28)

CREATE (A SMUDGED CODE HEADER TO PARAM FIELD *)

4
5
6
7
8
9

1 0
1 1
1 2
13 -->
1 4
15

(WARNING IF DUPLICATING A CURRENT NAME_*)
TIB HERE OAO + < 2 ?ERROR (FREE SPACE ?)
-FIND (CHECK IF UNIQUE IN CURRENT AND CONTEXT)
IF (WARN USER) DROP NFA ID.

4 MESSAGE
HERE DUP C@ WIDTH @ MIN

SPACE ENDIF
1+ ALLOT

DP C@ OFD = ALLOT
DUP AO TOGGLE HERE 1 80 TOGGLE (DELIMIT BITS)
LATEST CURRENT @
HERE 2+

FORTH INTEREST GROUP MAY 1, 1 9 7 9

SCR If 51
0 (LITERAL,
1

DLITERAL, [COMPILE], ?STACK WFR-79APR29)

2 (COMPILE] (FORCE COMPILATION OF AN IM~EDIATE WORD *)
3 -FIND 0= 0 ?ERROR DROP CFA IMMEDIATE
4
5 LITERAL (IF COMPILING, CREATE LITERAL *)
6 STATE @ IF COMPILE LIT ENDIF IMMEDIATE
7
8 DLITERAL (IF COMPILING, CREATE DOUBLE LITERAL *) 9 STATE @ IF SWAP (COMPILE] LITERAL

10 [COMPILE] LITERAL ENDIF ; IMMEDIATE
1 1
12 (FOLLOWING DEFINITION IS INSTALLATION DEPENDENT)
13 ?STACK (QUESTION UPON OVER OR UNDERFLOW OF STACK *)
14 09E SP@ < 1 ?ERROR SP@ 020 < 7 ?ERROR
15 -->

SCR If 52
0 (INTERPRET, WFR-79APR18)
1
2 INTERPRET (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS *)
3 BEGIN -FIND
4 IF (FOUND) STATE @ <
5 IF CFA , ELSE CFA EXECUTE ENDIF ?STACK 6 ELSE HERE NUMBER DPL @ 1+
7 IF (COMPILE] DLITERAL
8 ELSE DROP (COMPILE] LITERAL ENDIF ?STACK 9 ENDIF AGAIN

10 -->
1 1
12
1 3
14
15

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5

If 53
(IMMEDIATE,

IMMEDIATE
LATEST

VOCAB, DEFIN, FORTH, (DJK-WFR-79APR29)
(TOGGLE PREC. BIT OF LATEST CURRENT WORD *)

40 TOGGLE

VOCABULARY (CREATE VOCAB WITH 'V-HEAD' AT VOC INTERSECT. *) <BUILDS A081 CURRENT @ CFA
HERE VOC-LINK @ VOC-LINK
DOES> 2+ CONTEXT

VOCABULARY FORTH IMMEDIATE (THE TRUNK VOCABULARY *)

DEFINITIONS (SET THE CONTEXT ALSO AS CURRENT VOCAB *}
CONTEXT @ CURRENT

((SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS *)
29 WORD IMMEDIATE -->

FORTH INTEREST GROUP MAY 1 , 1 9 7 9

L/1

II 54 SCR
0
1
2
3

(QUIT, ABORT WFR-79MAR30)

QUIT
0 BLK
BEGIN

(RESTART, INTERPRET FROM TERMINAL *)
[COMPILE} [

4 RP! CR QUERY INTERPRET
5 STATE @ 0= IF " OK" ENDIF AGAIN
6
7
8
9

ABORT (WARM RESTART, INCLUDING REGISTERS *)

1 0
1 1
1 2
13 -->
1 4
15

SCR II 55

SP! DECIMAL DRO
CR ." FORTH-65 V 4.0"
[CONPILEJ FORTH DEFINITIONS QUIT

0 (COLD START WFR-79APR29) 1 CODE COLD (COLD START, INITIALIZING USER AREA *) 2 HERE 02 +ORIGIN (POINT COLD ENTRY TO HERE) 3 OC +ORIGIN LDA, 'T FORTH 4 + STA, (FORTH VOCAB.) 4 OD +ORIGIN LDA, 'T FORTH 5 + STA,
5 15 If LDY, (INDEX TO VOC-LINK) 0= IF, (FORCED) 6 HERE 06 +ORIGIN ! (POINT RE-ENTRY TO HERE)
7 OF II LDY, (INDEX TO WARNING) THEN, (FROM IF,)
8 10 +ORIGIN LDA, UP STA, (LOAD UP)
9 11 +ORIGIN LDA, UP 1+ STA,

10 BEGIN, OC +ORIGIN , Y LDA, (FROM LITERAL AREA) 11 UP)Y STA, (TO USER AREA)
12 DEY, 0< END,
13 'T ABORT 100 /MOD II LDA, IP 1+ STA,
14 If LDA, IP STA,
15 6C II LDA, W 1 - STA, 'T RP! JMP, (RUN) -->

SCR II 56
0 (MATH UTILITY
1 CODE S->D
2
3
4
5

BOT 1+ LDA,

DJK-WFR-79APR29)
(EXTEND SINGLE INTEGER TO DOUBLE *)

0< IF, DEY, THEN, TYA, PHA, PUSH JMP,

+- 0< IF MINUS ENDIF (APPLY SIGN TO NUMBER BENEATH *)

6 D+- (APPLY SIGN TO DOUBLE NUMBER BENEATH *) 7 0< IF DMINUS ENDIF
8

9 ABS DUP +-
10 DABS DUP D+-
1 1
12
1 3
1 4
1 5

MIN

MAX
OVER OVER > IF

OVER OVER < IF

FORTH INTEREST GROUP

(

(
SWAP

SWAP

DOUBLE

LEAVE
END IF

(LEAVE
END IF

(LEAVE ABSOLUTE VALUE *)
INTEGER ABSOLUTE VALUE *)

SMALLER OF TWO NUHBERS *)
DROP

LARGET OF TWO NUMBERS *)
DROP -->

MAY 1 ' 1979

SCR II 57
0 (HATH
I M*
2
3 H/
4
5
6
7 : *
8 /MOD

I 9
I 0
1 1
1 2
I 3
1 4
1 5

MOD
*/MOD

*I
M/MOD

SCR II 58

PACKAGE DJK-WFR-79APR29)
(LEAVE SIGNED DOUBLE PRODUCT OF TWO SINGLE NUMBERS *) OVER OVER XOR >R ABS SWAP ABS U* R> D+- ;

(FROM SIGNED D0UBLE-3-2, SIGNED DIVISOR-I *)
(LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-I *)

OVER >R >R DABS R ABS U/
, R> R XOR +- SWAP R> +- SWAP

U* DROP (SIGNED PRODUCT
(LEAVE REM-2, QUOT-1

(LEAVE QUOTIENT
(LEAVE REMAINDER

RATION OF THREE NUMBERS, LEAVING
(REM-2, QUOTIENT-I

(LEAVE RATIO OF THREE NUMBS
DIVISOR ••• REMAINDER, DOUBLE*)

>R S->D R>
/MOD SWAP
/HOD DROP

M/
DROP .
' (TAKE
M/ >R M* R>

*/MOD SWAP
(DOUBLE,
>R 0 R

DROP
SINGLE
u I R> SWAP >R U/ R> ~->

*)
*)
*).
*)

*)
*)
*)

0 (DISC UTILITY,
1 FIRST VARIABLE

GENERAL USE WFR-79APR02)
(NEXT BUFFER TO USE, STALEST *)

(MOST RECENTLY REFERENCED BUFFER *)

USE
PREV 2 FIRST

3
VARIABLE

4
5
6

+BUF (ADVANCE ADDRESS-I TO NEXT BUFFER. RETURNS FALSE *)
84 (I.E. B/BUF+4) + DUP LIMIT = (IF AT PREV *) IF DROP FIRST ENDIF DUP PREV @

7
8 UPDATE (MARK THE BUFFER POINTED TO BY PREV AS ALTERED *) 9 PREV @ @ 8000 OR PREV @

10
11 EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON'T WRITE TO DISC *) I2 FIRST LIMIT OVER ERASE
13
14
1 5

DRO
DRl

0 OFFSET
07DO OFFSET -->

(SELECT DRIVE #0 *)
(SELECT DRIVE #I *)

SCR II 59
0 (BUFFER WFR-79APR02)

(CONVERT BLOCK/I TO STORAGE ADDRESS *)
I BUFFER
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14 -->
15

USE
BEGIN
R @
IF (

R
R
0

@ DUP >R (BUFFER ADDRESS TO BE ASSIGNED)
+BUF UNTIL (AVOID PREV) USE (FOR NEXT TIME) 0< (TEST FOR UPDATE IN THIS BUFFER)

UPDATED, FLUSH TO DISC)
2+ (STORAGE LOC.)
@ 7FFF AND (ITS BLOCK II)

R/W (WRITE SECTOR TO DISC)
END IF

R
R
R>

(WRITE NEW BLOCK #
PREV (ASSIGN THIS

2+ (MOVE TO STORAGE

INTO THIS BUFFER)
BUFFER AS 'PREV')
LOCATION)

FORTH INTEREST GROUP MAY 1 , 1 9 7 9

II 60
WFR-79APR02)

SCR
0
1

(BLOCK
:. BLOCK (CONVERT BLOCK NUMBER TO ITS BUFFER ADDRESS *)

2
3
4
5
6
7
8
9

OFFSET
PREV @
IF (NOT

@ +
OUP
PREV

>R (RETAIN BLOCK # ON RETURN STACK)
@ R D UP + (B L 0 C K = P·R E V ?)
)

BEGIN
IF

+BUF 0=
(WRAPPED

DUP R 1

(TRUE UPON REACHING 'PREV')
) DROP R BUFFER

R/W (READ SECTOR FROM DISC)

10
11
1 2
1 3
14
15 -->

SCR II 61

2 - (BACKUP)
END IF
DUP @ R DUP + 0=

UN T I L (WI T H B U F F E R ADD R E S S)
DUP PREV

END IF
R> DROP 2+

0 (TEXT OUTPUT FORMATTING
1

WFR-79MAY03)

2 (LINE) (LINE/!, SCR/1, ••• BUFFER ADDRESS, 64 COUNT *)
3 >R C/L B/BUF */MOD R> B/SCR * +
4 BLOCK + C/L
5
6 .LINE (LINE#, SCR#, PRINTED *)
7 (LINE) -TRAILING TYPE
8
9 MESSAGE (PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0 *) 10 WARNING @

11 IF (DISC IS AVAILABLE)
12 -DUP IF 4 OFFSET @ B/SCR / .LINE ENDIF
1 3
14 -->
15

SCR II 62

ELSE II MSG # " END IF

0 (LOAD, --> WFR-79APR02)
1
2 LOAD (INTERPRET SCREENS FROM DISC *)
3 BLK @ >R IN @ >R 0 IN B/SCR * BLK
4 INTERPRET R> IN R> BLK
5
6 --> (CONTINUE INTERPRETATION ON NEXT SCREEN *)
7 ?LOADING 0 IN B/SCR BLK @ OVER
8 MOD BLK +! IMMEDIATE
9

10 -->
11
12
13
14
1 5

FORTH INTEREST GROUP HAY 1, 19 7 9

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
15

SCR
0

II
(
(

(

63
INSTALLATION DEPENDENT TERMINAL I-0, TIM WFR-79APR26

EMIT) ASSEMBLER
HERE -2 BYTE. IN EMIT (VECTOR EMITS' CF TO HERE
XSAVE STX, BOT LDA, 7F II AND, 72C6 JSR, XSAVE LDX,
CLC,

KEY

1 A II LDY, UP)Y LDA, 01 II ADC, UP)Y STA,
INY, UP)Y LDA, 00 II ADC, UP)Y STA, POP JMP,

(AND INCREMENT 'OUT')

HERE -2 BYTE.IN KEY (VECTOR KEYS' CF TO HERE)
XSAVE STX, BEGIN, 8 # LDX,
BEGIN, 6E02 LOA, .A LSR, CS END, 7320 JSR,
BEGIN, 7310 JSR, 0 X) CMP, 0 X) CMP, 0 X) CMP,
0 X) CMP, 0 X) CMP, 6E02 LDA, .A LSR, PHP, TYA,
.A LSR, PLP, CS IF, 80 # ORA, THEN, TAY, DEX,
0= END, 7310 JSR, FF II EOR, 7F II AND, 0= NOT END,
XSAVE LDX, PUSHOA JMP, -->

II 6 4

)

(INSTALLATION DEPENDENT TERMINAL I-0, TIM WFR-79APR02)

(?TERMINAL)
HERE -2 BYTE. IN ?TERMINAL (VECTOR LIKEWISE
1 II LDA, 6E02 BIT, 0= NOT IF,
BEGIN, 731D JSR, 6E02 BIT, 0= END, INY, THEN,

TYA,

(CR)

-->

II 65

HERE -2
XSAVE STX,

PUSHOA JMP,

BYTE.IN CR
728A JSR,

(VECTOR CRS' CF TO HERE)
XSAVE LDX, NEXT JMP,

(INSTALLATION DEPENDENT DISC

)

1 6900 CONSTANT DATA
WFR-79APR02)

(CONTROLLER PC>RT lc).

(CONTROLLER PORT *) 2 690l CONSTANT STATUS
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
15

IIHL
0 OA U/

-->

FORTH INTEREST GROUP

(CONVERT DECIMAL DIGIT FOR DISC CONTROLLER *)
SWAP 30 + HOLD

MAY 1, 19 7 9

SCR II 66
0 (D/CHAR, ?DISC, WFR-79MAR23
I CODED/CHAR (TEST CHAR-I. EXIT TEST BOOL-2, NEW CHAR-I *)
2 DEX, DEX, BOT 1+ STY, CO I LDA,
3 BEGIN, STATUS BIT, 0= NOT END, (TILL CONTROL READY)
4 DATA LDA, BOT STA, (SAVE CHAR)
5 SEC CMP, 0= IF, !NY, THEN, SEC STY, NEXT JMP,
6
7 ?DISC (UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL *)
8 I D/CHAR >R 0= (EDT, EXCEPT FOR SOH *)
9 IF (NOT SOH) R I5 =

I 0 IF (NAK) CR
11 BEGIN 4 D/CHAR EMIT
12 UNTIL (PRINT ERR MSG TIL EDT) QUIT
I3 ENDIF (FOR ENQ, ACK)
14 BEGIN 4 D/CHAR DROP UNTIL (AT EDT)
15 ENDIF R> DROP ; -->

SCR II 67
0 (BLOCK-WRITE WFR-790103)
1 CODE BLOCK-WRITE (SEND TO DISC FROM ADDRESS-2, COUNT-I *)
2 2 II LDA, SETUP JSR, (WITH EOT AT END *)
3 BEGIN, 02 II LDA,
4 BEGIN, STATUS BIT, 0• END, (TILL IDLE)
5 N CPY, 0•
6 IF, (DONE) 04 II LDA, STATUS STA, DATA STA,
7
8
9

10
1 1
12 -->
13
14
15

II 6 8

NEXT JMP,
THEN,

N 2+) Y LDA, DATA STA, INY,
0• END, (FORCED TO BEGIN)

(BLOCK-READ, WFR-790103)

SCR
0
1
2
3

CODE BLOCK-READ (BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL *).

4
5
6
7
8
9

10
1 1
12 -->
1 3
14
I5

1 # LDA, SETUP JSR,
BEGIN, CO # LDA,

BEGIN, STATUS BIT, 0= NOT END, (TILL FLAG)
50 (BVC, D6=DATA)

IF, DATA LDA, N)Y STA, !NY, SWAP
0< END, (LOOP TILL I28 BYTES)

THEN, (OR D6=0, SO D7a1,)
NEXT JMP,

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR II 69
0 (R/W FOR PERSCI 1070 CONTROLLER WFR-79MAY03)
1 OA ALLOT HERE (WORKSPACE TO PREPARE DISC CONTROL TEXT)
2 (IN FORM: C TT SS /D, TT=TRACK, SS=SECTOR, D=DRIVE)
3 (C = I TO READ, 0 TO WRITE *)
4 R/W (READ/WRITE DISC BLOCK *)
5 (BUFFER ADDRESS-3, BLOCK #-2, 1=READ O=WRITE *)
6 LITERAL HLD ! (JUST AFTER WORKSPACE) SWAP
7 0 OVER > OVER OF9F > OR 6 ?ERROR
8 0700 (2000 SECT/DR) /MOD IIHL DROP 2F HOLD BL HOLD
9 1A /MOD SWAP 1+ #HL #HL DROP BL HOLD (SECTOR 01-26)

10 #HL #HL DROP BL HOLD (TRACK 00-76)
DUP

'IF 49 (I=READ) ELSE 4F (O=WRITE) ENDIF
1 1
1 2
1 3
14
1 5

HOLD HLD @ OA BLOCK-WRITE (SEND TEXT) ?DISC
IF BLOCK-READ ELSE B/BUF BLOCK-WRITE ENDIF
?DISC -->

SCR II 70
0 { FORWARD REFERENCES
1 00
2 02
3 04
4 08
5 oc
6 OE
7 10
8 00
9 02

10 06
11 08
12 00
1 3 0 2
14 04
15 06

SCR II 71

BYTE. IN
BYTE. IN
BYTE. IN
BYTE.IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE. IN
BYTE.IN
BYTE.IN

.
' CONSTANT
CONSTANT
CONSTANT
CONSTANT

0 (FORWARD REFERENCES
1 02 BYTE.IN VARIABLE
2 02 BYTE.IN USER
3 06 BYTE.IN ?ERROR
4 OF BYTE.IN II

5 1D BYTE.IN II

6 00 BYTE.IN (ABORT)
7 19 BYTE.IN ERROR
8 25 BYTE.IN ERROR
9 oc

10 lE
1 1 2C
12 04
13 2C
14 30
1 5

BYTE.IN
BYTE. IN
BYTE. IN
BYTE.IN
BYTE. IN
BYTE. IN

WORD
CREATE
CREATE
ABORT
BUFFER
BLOCK

FORTH INTEREST GROUP

REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED. BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED. BY

REPLACED.BY
REPLACED. BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED.BY
REPLACED. BY
REPLACED.BY

?EXEC
!CSP
CURRENT
CONTEXT
CREATE
J
(;CODE)
?CSP
COMPILE
SMUDGE
[
CREATE
SMUDGE

' (;CODE)

(;CODE)
(;CODE)
ERROR
WORD
WORD
ABORT
MESSAGE
QUIT
BLOCK
HESSAGE
MIN
DRO
R/W
R/W

WFR-79HAR30)

-->

WFR-79APR29)

DECIMAL ;S

MAY 1 , 19 7 9

II 7 2 SCR
0
1

(FORGET, \ WFR-79APR28)
HEX 3 WIDTH

2
3
4

(FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
-FIND 0= 0 ?ERROR DROP [COMPILE] LITERAL ;

1

IMMEDIATE
5
6
7

FORGET
CURRENT
[COMPILE]
DUP NFA

(FOLLOWING WORD FROM CURRENT VOCABULARY *)

8
9

10
1 1
1 2
13 -->
14
15

SCR II 73

@
,

DP

CONTEXT @ 18 ?ERROR
DUP FENCE @ < 15 ?ERROR

LFA @ CURRENT @

0 (CONDITIONAL COMPILER, PER SHIRA WFR-79APR01)
1 BACK HERE (RESOLVE BACKWARD BRANCH *)
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

SCR If
0 (
1
2

3
4
5
6
7
8
9

BEGIN ?COMP HERE 1

END IF ?COMP 2 ?PAIRS HERE OVER SWAP

THEN (COMPILE] END IF IMMEDIATE

DO COMPILE (DO) HERE 3

LOOP 3 ?PAIRS COMPILE (LOOP) BACK

+LOOP 3 ?PAIRS COMPILE (+LOOP) BACK

UNTIL 1 ?PAIRS COMPILE OBRANCH BACK

74
CONDITIONAL COMPILER

END [COMPILE] UNTIL IMMEDIATE

AGAIN 1 ?PAIRS COMPILE BRANCH BACK

REPEAT >R >R [COMPILE] AGAIN
R> R> 2 [COMPILE] ENDIF

IF COMPILE OBRANCH HERE 0 2

10 ELSE 2 ?PAIRS COMPILE BRANCH HERE 0

IMMEDIATE

IMMEDIATE

IMMEDIATE

IMMEDIATE

IMMEDIATE

IMMEDIATE -->

WFR-79APR01)

IMMEDIATE

IMHEDIATE

IMMEDIATE

1 1 SWAP 2 [COMPILE] ENDIF 2 IMMEDIATE
1 2
13 : WHILE
1 4
15 -->

[COMPILE] IF 2+ IMMEDIATE

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR II 75
0 (NUMERIC PRIMITIVES WFR-79APR01 1 SPACES 0 MAX -DUP IF 0 DO SPACE LOOP ENDIF
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

<II

II>

SIGN

II

. II s .
-->

II 76 SCR
0
1
2
3
4
5
6
7
8

(OUTPUT
D.R

D.

.R

9 : •
10
11 ?
1 2
13 ,
14 -->
15

II 7 7

>R
R>

CFA

PAD HLD

DROP DROP HLD @ PAD OVER

ROT 0< IF 2D HOLD END IF

(CONVERT ONE DIGIT, HOLDING IN PAD *)
BASE @ M/MOD ROT 9 OVER < IF 7 + ENDIF 30 + HOLD

BEGIN II OVER OVER OR 0= UNTIL

OPERATORS WFR-79APR20)
(DOUBLE INTEGER OUTPUT, RIGHT ALIGNED IN FIELD *)

SWAP OVER DABS <# #S SIGN #>
OVER SPACES TYPE

0 D.R SPACE (DOUBLE INTEGER OUTPUT *)

>R S->D R> D.R (ALIGNED SINGLE INTEGER *)

S->D D. (SINGLE INTEGER OUTPUT *)

@ (PRINT CONTENTS OF MEMORY *)
,

MESSAGE 2A + (PRINT MESSAGE NUMBER) .

SCR
0
1
2
3
4
5
6
7
8
9

(PROGRAM DOCUMENTATION
HEX WFR-79APR20)

10
1 1
1 2
1 3
1 4
15

: LIST

INDEX

TRIAD

(LIST SCREEN
SCR

BY NUMBER ON STACK *)
DECIMAL
II SCR # II

I SCR @

CR DUP
10

.LINE
0 DO CR I

LOOP CR
3 .R SPACE

(PRINT FIRST LINE OF EACH SCREEN FROM-2, oc EMIT (FORM FEED) CR 1+ SWAP
DO CR I 3 .R SPACE

0 I .LINE
?TERMINAL IF LEAVE END IF LOOP ;

(PRINT 3 SCREENS ON PAGE, CONTAINING II ON oc EMIT (FF) 3 I 3 * 3 OVER + SWAP
DO CR I LIST LOOP CR
OF MESSAGE CR DECIMAL -->

T0-1 *)

STACK *)

FORTH INTEREST GROUP MAY 1 , 19 7 9

'·~
SCR II 78

0 (TOOLS WFR-79APR20)
1 HEX
2 VLIST (LIST CONTEXT VOCABULARY *)
3 80 OUT CONTEXT @ @
4 BEGIN OUT @ C/L > IF CR 0 OUT ENDIF
5
6
7 -->
8
9

10
11
1 2
13
14
1 5

SCR II 79
0 (TOOLS
1 HEX
2
3 CREATE
4
5
6

7
8
9

10 DECIMAL
11 HERE
12 HERE
13 HERE
14 LATEST
15 ' FORTH

SCR II 80
0 -->
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15

DUP ID. SPACE SPACE PFA LFA @
DUP 0= ?TERMINAL OR UNTIL DROP

WFR-79MAY03)

MON (CALL MONITOR, SAVING RE-ENTRY TO FORTH *)
0 C,

28
30
12

6 +

4C C, ' LIT 18 + , SMUDGE

FENCE
+ORIGIN
+ORIGIN
+ORIGIN

32 +ORIGIN

(COLD START FENCE }
(COLD $TART DP)
(TOPMOST WORD)

(COLD VOC-LINK) ;S

FORTH INTEREST GROUP MAY 1, 19 79

This is a sample editor, compatable with the fig-FORTH model and simple terminal
devices. The I ine and screen editing functions are portable. The code definition
for the string MATCH could be written high level or translated Q

SCR fl 87
0 (TEXT, LINE WFR-79MAY01)
1 FORTH DEFINITIONS
2 TEXT

HEX
(ACCEPT FOLLOWING ~EXT TO PAD *)

WORD HERE PAD C/L 1+ CMOVE 3 HERE C/L 1+ BLANKS
4
5
6
7

LINE
DUP
SCR

(RELATIVE TO SCR, LEAVE ADDRESS OF LINE *)
FFFO AND 17 ?ERROR (KEEP ON THIS SCREEN)
@ (LINE) DROP

8 -->
9

10
11
1 2
1 3
I4
15

SCR
0
1
2
3
4
5
6
7
8
9

10
11
1 2
13
14
1 5

SCR
0
1
2
3
4
5
6

II 8 8
(LINE EDITOR
VOCABULARY EDITOR IMMEDIATE HEX

WFR-79MAY03)

WHERE
DUP B/SCR
SWAP C/L
CR HERE

(PRINT SCREEN # AND IMAGE OF ERROR *)
/ DUP SCR ." SCR # " DECIMAL

/MOD C/L * ROT BLOCK + CR C/L TYPE
C@ SPACES SE EMIT [COMPILE] EDITOR QUIT

EDITOR DEFINITIONS
/!LOCATE (LEAVE CURSOR OFFSET-2, LINE-1 *}

/MOD

II
(. .

II LEAD

I! LAG

-MOVE

89
LINE

H

Rll @ C/L
(LINE ADDRESS-2, OFFSET-! TO CURSOR *)

IILOCATE LINE SWAP ;
(CURSOR ADDRESS-2, COUNT-I AFTER CURSOR *)

IILEAD DUP >R + C/L R> ;
(MOVE IN BLOCK BUFFER ADDR FROM-2, LINE T0-1 *)

LINE C/L CMOVE UPDATE · ; -->

EDITING COMMANDS

LINE PAD 1+ C/L

WFR-79MAY03)
(HOLD NUMBERED LINE AT PAD *)

DUP PAD C! CMOVE

E (ERASE LINE-1 WITH BLANKS *)
LINE C/L BLANKS UPDATE

7 s (SPREAD MAKING LINE II BLANK *)
8
9

10
11 D
1 2
13
14
15 -->

DUP
DO

DUP
DO

1
I LINE

H OF
I 1+

FORTH INTEREST GROUP

(LIMIT)
I 1+

DUP ROT
LINE I

OE (FIRST TO MOVE)
-MOVE -1 +LOOP E

(DELETE LINE-I, BUT HOLD IN PAD *)

-MOVE LOOP E

MAY 1, 19 7 9 ·

...$/

II 90 SCR
0
1
2
3
4
5
6
7
8

(LINE EDITING COMMANDS WFR-79MAY03)

M (MOVE CURSOR BY SIGNED AMOUNT-I, PRINT ITS LINE *)
Rfl +! CR SPACE II LEAD TYPE SF EUIT

II LAG TYPE //LOCATE DROP

T (TYPE LINE BY Il-l , SAVE ALSO IN PAD *)
DUP C/L * Rll DUP H 0 M

9 : L
1 0

(RE-LIST SCREEN *)
SCR @ LIST 0 M

11 -->
1 2
13
14
1 5

II 91 SCR
0
I
2
3
4
5
6
7
8
9

(LINE EDITING COMMANDS
R

WFR-790105)
(REPLACE ON LINE 11-1, FROM PAD *)

PAD I+ SWAP -MOVE

I 0
I I
12
I 3
14
15

p

I

. TOP .
-->

SCR II 92

I

DUP

0

(PUT FOLLOWING TEXT ON LINE-1 *)
TEXT R

(INSERT TEXT FROM PAD ONTO LINE II *) s R
CR

(HOME CURSOR TO TOP LEFt OF SCREEN *)
Rfl

0 (SCREEN EDITING COMMANDS WFR-79APR27)
(CLEAR SCREEN BY NUMBER-I *)

I EDITOR E LOOP

CLEAR 1
2
3

SCR 10 0 DO FORTH

4 FLUSH
5 [LIMIT FIRST
6 LITERAL 0 DO
7
8 COPY
9 B/SCR * OFFSET

10 DO DUP FORTH
II DROP FLUSH
12 -->
13
14
15

FORTH INTEREST GROUP

I

(WRITE ALL UPDATED BLOCKS TO DISC *)
B /BUF 4 + /] (NUMBER OF BUFFERS)

7FFF BUFFER DROP LOOP

(DUPLICATE SCREEN-2, ONTO SCREEN-I *)
@ + SWAP B/SCR * B/SCR OVER + SWAP

BLOCK 2 1+ UPDATE LOOP

MAY 1 , 19 7 9

SCR
0
1
2
3
4
5
6
7

II 93
(STRING EDITING PRIMITIVES WFR~79APR21)
CODE MATCH (CURSOR ADDRESS-4, BYTES LEFT-3, STRING ADDR-2 *)

(ITS COUNT-I. LEAVE BOOLEAN-2, CURSOR ADVANCEMEN~-1 *)
4 II LDA, SETUP JSR, DEX, DEX, DEX, DEX,
BOT STY, BOT 1+ STY,

BEG IN, (NEW HATCH) DROP (ERR) FF II LDY,
BEG IN, DROP (ERR) INY, N CPY, CS NOT

IF, (Y < STRING) N 2+)Y LDA, N 6 +)Y CMP,
8 ROT 1
9

0• NOT UNTIL, (REPEAT FOR GOOD MATCH)
N 6 + INC, 0= IF, N 7 + INC, ENDIF,

10
1 1
1 2
13
14

BOT INC, 0= IF, BOT 1+ INC, END IF, (CUR MOT)
N 4 + LDA, 0= IF, N 5 + DEC, ENDIF,

N 4 + DEC,· (DECREMENT BUFFER REMAINING)
N 4 + LDA, N CMP, (REMAINING - STRING SIZE)

N 5 + LDA, N 1+ SBC,
1 5 ROT 1 CS NOT UNTIL, --> (REPT TILL OUT OF BUFFER)

SCR II 94
0 {
1
2
3
4
5
6
7 -->
8
9

10
1 1
12
1 3
14
15

II 95

CONCLUSION OF STRING MATCH WFR-79APR22)
0 II LDA, SEC STA, SEC 1+ STA, { BOOLEAN FALSE)
N 4 + LDY, (SPACE UNTIL END OF BUFFER)

ENDIF,
CLC, TYA, BOT ADC, PHA,

0 II LDA, BOT 1+ ADC, (ADJUST CURSOR MOTION)
PUT JMP, C;

SCR
0
1
2

EDITING COMMANDS (STRING
!LINE { SCAN LINE WITH

{
IILAG PAD COUNT MATCH

WFR-79MAR24)
CURSOR FOR MATCH TO PAD TEXT, *)
UPDATE CURSOR, RETURN BOOLEAN *)

Rll +! 3
4
5
6
7

FIND { STRING AT PAD OVER FULL SCREEN RANGE, ELSE ERROR *)

8
9

BEGIN 3FF R# @
IF TOP PAD
!LINE UNTIL

<
HERE

10
1 1

DELETE

1 2
1 3
1 4
15 -->

>R IILAG + FORTH R
#LAG R MINUS R# +1
#LEAD + SWAP CMOVE
R> BLANKS UPDATE

FORTH INTEREST GROUP

C/L 1+ CMOVE 0 ERROR END IF

{ BACKWARDS AT CURSOR BY COUNT-I *)
(SAVE BLANK FILL LOCATION)
(BACKUP CURSOR)

(FILL FROM END OF TEXT)

MAY 1, 19 7 9

r'

{

· "

SCR II 96
0 (STRING EDITOR COMMANDS WFR-79MAR24)
1 N (FIND NEXT OCCURANCE OF PREVIOUS T&XT *)
2 FIND 0 M ;
3
4 F (FIND OCCURANCE OF FOLLOWING TEXT *)
5 1 TEXT N
6
7 : B (BACKUP CURSOR BY TEXT IN PAD *)
8 PAD C@ MINUS M
9

10 X (DELETE FOLLOWING TEXT *)
1 1 1 TEXT FIND PAD C@ DELETE 0 M
12
13 TILL (DELETE ON CURSOR LINE, FROM CURSOR TO TEXT END *)
14 #LEAD + 1 · TEXT !LINE 0• 0 ?ERROR
1 5 #LEAD + SWAP DELETE 0 M -->

SCR II 97
0 (STRING EDITOR COMMANDS WFR-79MAR23)
1 C (SPREAD AT CURSOR AND COPY IN THE FOLLOWING TEXT *)

2 1 TEXT PAD COUNT
3 #LAG ROT OVER MIN >R
4 FORTH R Ril +! { BUMP CURSOR)
5 R >R (CHARS TO SAVE)
6 DUP HERE R CMOVE (FROM OLD CURSOR TO HERE)
7 HERE /ILEAD + R> CMOVE (HERE TO CURSOR LOCATION)
8 R> CMOVE UPDATE (PAD TO OLD CURSOR)
9 0 M (LOOK AT NEW LINE)

10 FORTH DEFINITIONS DECIMAL
11 LATEST 12 +ORIGIN (TOP NFA)
12 HERE 28 +ORIGIN (FENCE)
13 HERE 30 +ORIGIN (DP)
14 I EDITOR 6 + 32 +ORIGIN (VOC-LINK)
15 HERE FENCE ;S

SCR # 98
0
1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
14
15

FORTH INTEREST GROUP
u

MAY 1, 19 79

